Have a personal or library account? Click to login
An Umbrella Review of Meta-Analyses Evaluating Associations between Human Health and Exposure to Major Classes of Plastic-Associated Chemicals Cover

An Umbrella Review of Meta-Analyses Evaluating Associations between Human Health and Exposure to Major Classes of Plastic-Associated Chemicals

Open Access
|Aug 2024

References

  1. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3(7):e1700782e1700782. doi:10.1126/sciadv.1700782.
  2. Hahladakis JN, Velis CA, Weber R, Lacovidou E, Purnell P. An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mater. 2018;344:179199. doi:10.1016/j.jhazmat.2017.10.014.
  3. Landrigan PJ, Raps H, Cropper M, et al. The Minderoo-Monaco commission on plastics and human health. Ann Glob Health. 2023;89(1):23. doi:10.5334/aogh.4056.
  4. Lithner D, Larsson Å, Dave G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci Total Environ. 2011;409(18):33093324. doi:10.1016/j.scitotenv.2011.04.038.
  5. Wiesinger H, Wang Z, Hellweg S. Deep dive into plastic monomers, additives, and processing aids. Environ Sci Technol. 2021;55(13):93399351. doi:10.1021/acs.est.1c00976.
  6. OECD. Global Plastics Outlook: Economic Drivers, Environmental Impacts and Policy Options. Organisation for Economic Co-operation and Development; 2022. Accessed December 15, 2022. doi:10.1787/de747aef-en.
  7. Symeonides C, Brunner M, Mulders Y, et al. Buy‐now‐pay‐later: hazards to human and planetary health from plastics production, use and waste. J Paediatr Child Health. 2021;57(11):17951804. doi:10.1111/jpc.15777.
  8. Jamarani R, Erythropel HC, Nicell JA, Leask RL, Marić M. How green is your plasticizer? Polymers. 2018;10(8):834. doi:10.3390/polym10080834.
  9. Geueke B, Groh KJ, Maffini MV, et al. Systematic evidence on migrating and extractable food contact chemicals: most chemicals detected in food contact materials are not listed for use. Crit Rev Food Sci Nutr. 2022;0(0):111. doi:10.1080/10408398.2022.2067828.
  10. Giuliani A, Zuccarini M, Cichelli A, Khan H, Reale M. Critical review on the presence of phthalates in food and evidence of their biological impact. Int J Environ Res Public Health. 2020;17(16):5655. doi:10.3390/ijerph17165655.
  11. Groh KJ, Backhaus T, Carney-Almroth B, et al. Overview of known plastic packaging-associated chemicals and their hazards. Sci Total Environ. 2019;651:32533268. doi:10.1016/j.scitotenv.2018.10.015.
  12. Adibi JJ, Whyatt RM, Williams PL, et al. Characterization of phthalate exposure among pregnant women assessed by repeat air and urine samples. Environ Health Perspect. 2008;116(4):467473. doi:10.1289/ehp.10749.
  13. Lomonaco T, Manco E, Corti A, et al. Release of harmful volatile organic compounds (VOCs) from photo-degraded plastic debris: a neglected source of environmental pollution. J Hazard Mater. 2020;394:122596. doi:10.1016/j.jhazmat.2020.122596.
  14. Rudel RA, Camann DE, Spengler JD, Korn LR, Brody JG. Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust. Environ Sci Technol. 2003;37(20):45434553. doi:10.1021/es0264596.
  15. Weschler CJ, Bek ö G, Koch HM, et al. Transdermal uptake of diethyl phthalate and di(n-butyl) phthalate directly from air: experimental verification. Environ Health Perspect. 2015;123(10):928934. doi:10.1289/ehp.1409151.
  16. Andersen C, Krais AM, Eriksson AC, et al. Inhalation and dermal uptake of particle and gas-phase phthalates—a human exposure study. Environ Sci Technol. 2018;52(21):1279212800. doi:10.1021/acs.est.8b03761.
  17. Martín-Pozo L, Gómez-Regalado M del C, Moscoso-Ruiz I, Zafra-Gómez A. Analytical methods for the determination of endocrine disrupting chemicals in cosmetics and personal care products: a review. Talanta. 2021;234:122642. doi:10.1016/j.talanta.2021.122642.
  18. Sasso AF, Pirow R, Andra SS, et al. Pharmacokinetics of bisphenol a in humans following dermal administration. Environ Int. 2020;144:106031. doi:10.1016/j.envint.2020.106031.
  19. Zhang YJ, Guo JL, Xue JC, Bai CL, Guo Y. Phthalate metabolites: characterization, toxicities, global distribution, and exposure assessment. Environ Pollut. 2021;291:118106. doi:10.1016/j.envpol.2021.118106.
  20. Trasande L, Lampa E, Lind L, Lind PM. Population attributable risks and costs of diabetogenic chemical exposures in the elderly. J Epidemiol Community Health. 2017;71(2):111114. doi:10.1136/jech-2016-208006.
  21. UNEP. Chemicals in plastics—a technical report. United Nations Environment Programme (UNEP) and Secretariat of the Basel, Rotterdam and Stockholm Conventions; 2023. Accessed November 20, 2023. http://www.unep.org/resources/report/chemicals-plastics-technical-report.
  22. Martin Wagner, Laura Monclús, Hans Peter H. Arp, Ksenia J. Groh, Mari E. Løseth, Jane Muncke, Zhanyun Wang, Raoul Wolf, Lisa Zimmermann (2024) State of the science on plastic chemicals - Identifying and addressing chemicals and polymers of concern, doi:10.5281/zenodo.10701706.
  23. Woodruff TJ, Sutton P. The navigation guide systematic review methodology: a rigorous and transparent method for translating environmental health science into better health outcomes. Environ Health Perspect. 2014;122(10):10071014. doi:10.1289/ehp.1307175.
  24. Grandjean P, Landrigan PJ. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014;13(3):330338. doi:10.1016/S1474-4422(13)70278-3.
  25. Seewoo BJ, Goodes LM, Mofflin L, et al. The plastic health map: a systematic evidence map of human health studies on plastic-associated chemicals. Environ Int. 2023;181:108225. doi:10.1016/j.envint.2023.108225.
  26. Eales J, Bethel A, Galloway T, et al. Human health impacts of exposure to phthalate plasticizers: an overview of reviews. Environ Int. 2022;158:106903. doi:10.1016/j.envint.2021.106903.
  27. Lin MH, Lee CY, Chuang YS, Shih CL. Exposure to bisphenol a associated with multiple health-related outcomes in humans: an umbrella review of systematic reviews with meta-analyses. Environ Res. 2023;237:116900. doi:10.1016/j.envres.2023.116900.
  28. Rojas-Rueda D, Morales-Zamora E, Alsufyani WA, et al. Environmental risk factors and health: an umbrella review of meta-analyses. Int J Environ Res Public Health. 2021;18(2):704. doi:10.3390/ijerph18020704.
  29. Aromataris E, Fernandez R, Godfrey CM, Holly C, Khalil H, Tungpunkom P. Summarizing systematic reviews: methodological development, conduct and reporting of an umbrella review approach. JBI Evid Implement. 2015;13(3):132. doi:10.1097/XEB.0000000000000055.
  30. Fusar-Poli P, Radua J. Ten simple rules for conducting umbrella reviews. Evid Based Ment Health. 2018;21(3):95100. doi:10.1136/ebmental-2018-300014.
  31. Muncke J, Backhaus T, Geueke B, et al. Scientific challenges in the risk assessment of food contact materials. Environ Health Perspect. 2017;125(9):095001. doi:10.1289/EHP644.
  32. Zimmermann L, Bartosova Z, Braun K, Oehlmann J, Völker C, Wagner M. Plastic products leach chemicals that induce in vitro toxicity under realistic use conditions. Environ Sci Technol. 2021;55(17):1181411823. doi:10.1021/acs.est.1c01103.
  33. World Health Organization. Dietary and Inhalation Exposure to Nano- and Microplastic Particles and Potential Implications for Human Health; 2022:154. Accessed December 15, 2023. https://www.who.int/publications-detail-redirect/9789240054608.
  34. ECHA (European Chemicals Agency. Mapping Exercise – Plastic Additives Initiative. European Chemicals Agency; 2020. Accessed July 21, 2020. https://echa.europa.eu/de/mapping-exercise-plastic-additives-initiative#table.
  35. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg. 2021;88:105906. doi:10.1016/j.ijsu.2021.105906.
  36. Rada G, Pérez D, Araya-Quintanilla F, et al. Epistemonikos: a comprehensive database of systematic reviews for health decision-making. BMC Med Res Methodol. 2020;20(1):286. doi:10.1186/s12874-020-01157-x.
  37. Morgan RL, Whaley P, Thayer KA, Schünemann HJ. Identifying the PECO: a framework for formulating good questions to explore the association of environmental and other exposures with health outcomes. Environ Int. 2018:121(Pt 1):10271031. doi:10.1016/j.envint.2018.07.015.
  38. Shea BJ, Grimshaw JM, Wells GA, et al. Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews. BMC Med Res Methodol. 2007;7(1):10. doi:10.1186/1471-2288-7-10.
  39. Pieper D, Mathes T, Eikermann M. Can AMSTAR also be applied to systematic reviews of non-randomized studies? BMC Res Notes. 2014;7(1):609. doi:10.1186/1756-0500-7-609.
  40. Gates M, Gates A, Duarte G, et al. Quality and risk of bias appraisals of systematic reviews are inconsistent across reviewers and centers. J Clin Epidemiol. 2020;125:915. doi:10.1016/j.jclinepi.2020.04.026.
  41. Taioli E, Bonassi S. Pooled analysis of epidemiological studies involving biological markers. Int J Hyg Environ Health. 2003;206(2):109115. doi:10.1078/1438-4639-00198.
  42. McKenzie JE, Brennan SE. Synthesizing and presenting findings using other methods. In: Cochrane Handbook for Systematic Reviews of Interventions Version 6.2. Ltd: John Wiley & Sons; Updated February 2021;321347. doi:10.1002/9781119536604.ch12.
  43. Stone JC, Maurits JSF, Dizon J, et al. Unit of analysis errors in meta-analyses of exposure to plastic chemicals. in preparation.
  44. Johnson PI, Sutton P, Atchley DS, et al. The navigation guide—evidence-based medicine meets environmental health: systematic review of human evidence for PFOA effects on fetal growth. Environ Health Perspect. 2014;122(10):10281039. doi:10.1289/ehp.1307893.
  45. Zhao X, Peng S, Xiang Y, et al. Correlation between prenatal exposure to polybrominated diphenyl ethers (PBDEs) and infant birth outcomes: a meta-analysis and an experimental study. Int J Environ Res Public Health. 2017;14(3):268. doi:10.3390/ijerph14030268.
  46. Hu CY, Li FL, Hua XG, Jiang W, Mao C, Zhang XJ. The association between prenatal bisphenol A exposure and birth weight: a meta-analysis. Reprod Toxicol. 2018a;79:2131. doi:10.1016/j.reprotox.2018.04.013.
  47. Negri E, Metruccio F, Guercio V, et al. Exposure to PFOA and PFOS and fetal growth: a critical merging of toxicological and epidemiological data. Crit Rev Toxicol. 2017;47(6):489515. doi:10.1080/10408444.2016.1271972.
  48. Zhang H, Gao F, Ben Y, Su Y. Association between phthalate exposure and risk of spontaneous pregnancy loss: a systematic review and meta-analysis. Environ Pollut. 2020;267:115446. doi:10.1016/j.envpol.2020.115446.
  49. Nieminen P, Lehtiniemi H, Huusko A, Vähäkangas K, Rautio A. Polychlorinated biphenyls (PCBs) in relation to secondary sex ratio–a systematic review of published studies. Chemosphere. 2013;91(2):131138. doi:10.1016/j.chemosphere.2012.11.019.
  50. Govarts E, Nieuwenhuijsen M, Schoeters G, et al. Birth weight and prenatal exposure to polychlorinated biphenyls (PCBs) and dichlorodiphenyldichloroethylene (DDE): a meta-analysis within 12 European birth cohorts. Environ Health Perspect. 2012;120(2):162170. doi:10.1289/ehp.1103767.
  51. Steenland K, Barry V, Savitz D. Serum perfluorooctanoic acid and birthweight: an updated meta-analysis with bias analysis. Epidemiology. 2018;29(6):765776. doi:10.1097/EDE.0000000000000903.
  52. Zhong Q, Peng M, He J, Yang W, Huang F. Association of prenatal exposure to phenols and parabens with birth size: a systematic review and meta-analysis. Sci Total Environ. 2020;703:134720. doi:10.1016/j.scitotenv.2019.134720.
  53. Zou H, Lin Y, Yang L, et al. Neonatal weight and prenatal exposure to polychlorinated biphenyls: a meta-analysis. Asian Pac J Cancer Prev APJCP. 2019;20(11):32513258. doi:10.31557/APJCP.2019.20.11.3251.
  54. Golestanzadeh M, Riahi R, Kelishadi R. Association of exposure to phthalates with cardiometabolic risk factors in children and adolescents: a systematic review and meta-analysis. Environ Sci Pollut Res. 2019;26(35):3567035686. doi:10.1007/s11356-019-06589-7.
  55. Bigambo FM, Sun H, Yan W, et al. Association between phenols exposure and earlier puberty in children: a systematic review and meta-analysis. Environ Res. 2020;190:110056. doi:10.1016/j.envres.2020.110056.
  56. Golestanzadeh M, Riahi R, Kelishadi R. Association of phthalate exposure with precocious and delayed pubertal timing in girls and boys: a systematic review and meta-analysis. Environ Sci Process Impacts. 2020;22(4):873894. doi:10.1039/C9EM00512A.
  57. Wen Y, Liu SD, Lei X, Ling YS, Luo Y, Liu Q. Association of PAEs with precocious puberty in children: a systematic review and meta-analysis. Int J Environ Res Public Health. 2015;12(12):1525415268. doi:10.3390/ijerph121214974.
  58. Dorman DC, Chiu W, Hales BF, et al. Systematic reviews and meta-analyses of human and animal evidence of prenatal diethylhexyl phthalate exposure and changes in male anogenital distance. J Toxicol Environ Health Part B. 2018;21(4):207226. doi:10.1080/10937404.2018.1505354.
  59. Nelson W, Liu DY, Yang Y, Zhong ZH, Wang YX, Ding YB. In utero exposure to persistent and nonpersistent endocrine-disrupting chemicals and anogenital distance: a systematic review of epidemiological studies. Biol Reprod. 2020;102(2):276291. doi:10.1093/biolre/ioz200.
  60. Cai W, Yang J, Liu Y, Bi Y, Wang H. Association between phthalate metabolites and risk of endometriosis: a meta-analysis. Int J Environ Res Public Health. 2019;16(19):3678. doi:10.3390/ijerph16193678.
  61. Cano-Sancho G, Ploteau S, Matta K, et al. Human epidemiological evidence about the associations between exposure to organochlorine chemicals and endometriosis: systematic review and meta-analysis. Environ Int. 2019;123:209223. doi:10.1016/j.envint.2018.11.065.
  62. Roy D, Morgan M, Yoo C, et al. Integrated bioinformatics, environmental epidemiologic and genomic approaches to identify environmental and molecular links between endometriosis and breast cancer. Int J Mol Sci. 2015;16(10):2528525322. doi:10.3390/ijms161025285.
  63. Cai H, Zheng W, Zheng P, et al. Human urinary/seminal phthalates or their metabolite levels and semen quality: a meta-analysis. Environ Res. 2015;142:486494. doi:10.1016/j.envres.2015.07.008.
  64. Wen X, Xiong Y, Qu X, et al. The risk of endometriosis after exposure to endocrine-disrupting chemicals: a meta-analysis of 30 epidemiology studies. Gynecol Endocrinol. 2019;35(8):645650. doi:10.1080/09513590.2019.1590546.
  65. Hwang S, Lim JE, Choi Y, Jee SH. Bisphenol A exposure and type 2 diabetes mellitus risk: a meta-analysis. BMC Endocr Disord. 2018;18(1):81. doi:10.1186/s12902-018-0310-y.
  66. Rancière F, Lyons JG, Loh VHY, et al. Bisphenol a and the risk of cardiometabolic disorders: a systematic review with meta-analysis of the epidemiological evidence. Environ Health. 2015;14(1):46. doi:10.1186/s12940-015-0036-5.
  67. Song Y, Chou EL, Baecker A, et al. Endocrine-disrupting chemicals, risk of type 2 diabetes, and diabetes-related metabolic traits: a systematic review and meta-analysis. J Diabetes. 2016;8(4):516532. doi:10.1111/1753-0407.12325.
  68. Wu H, Bertrand KA, Choi AL, et al. Persistent organic pollutants and type 2 diabetes: a prospective analysis in the nurses’ health study and meta-analysis. Environ Health Perspect. 2013;121(2):153161. doi:10.1289/ehp.1205248.
  69. Shoshtari-Yeganeh B, Zarean M, Mansourian M, et al. Systematic review and meta-analysis on the association between phthalates exposure and insulin resistance. Environ Sci Pollut Res. 2019;26(10):94359442. doi:10.1007/s11356-019-04373-1.
  70. Kim MJ, Moon S, Oh BC, Jung D, Choi K, Park YJ. Association between diethylhexyl phthalate exposure and thyroid function: a meta-analysis. Thyroid. 2019a;29(2):183192. doi:10.1089/thy.2018.0051.
  71. Kim MJ, Moon S, Oh BC, et al. Association between perfluoroalkyl substances exposure and thyroid function in adults: a meta-analysis. PLOS ONE. 2018;13(5):e0197244. doi:10.1371/journal.pone.0197244.
  72. Zhao X, Wang H, Li J, Shan Z, Teng W, Teng X. The correlation between polybrominated diphenyl ethers (PBDEs) and thyroid hormones in the general population: a meta-analysis. PLOS ONE. 2015;10(5):e0126989. doi:10.1371/journal.pone.0126989.
  73. Hu Y, Wen S, Yuan D, et al. The association between the environmental endocrine disruptor bisphenol a and polycystic ovary syndrome: a systematic review and meta-analysis. Gynecol Endocrinol. 2018b;34(5):370377. doi:10.1080/09513590.2017.1405931.
  74. Lam J, Lanphear BP, Bellinger D, et al. Developmental PBDE exposure and IQ/ADHD in childhood: a systematic review and meta-analysis. Environ Health Perspect. 2017;125(8):086001. doi:10.1289/EHP1632.
  75. Lee DW, Kim MS, Lim YH, Lee N, Hong YC. Prenatal and postnatal exposure to di-(2-ethylhexyl) phthalate and neurodevelopmental outcomes: a systematic review and meta-analysis. Environ Res. 2018;167:558566. doi:10.1016/j.envres.2018.08.023.
  76. Radke EG, Braun JM, Nachman RM, Cooper GS. Phthalate exposure and neurodevelopment: a systematic review and meta-analysis of human epidemiological evidence. Environ Int. 2020;137:105408. doi:10.1016/j.envint.2019.105408.
  77. Forns J, Verner MA Iszatt N, et al. Early life exposure to perfluoroalkyl substances (PFAS) and ADHD: a meta-analysis of nine European population-based studies. Environ Health Perspect. 2020;128(5):057002. doi:10.1289/EHP5444.
  78. Kim KY, Lee E, Kim Y. The association between bisphenol a exposure and obesity in children—a systematic review with meta-analysis. Int J Environ Res Public Health. 2019b;16(14):2521. doi:10.3390/ijerph16142521.
  79. Wu W, Li M, Liu A, et al. Bisphenol a and the risk of obesity: a systematic review with meta-analysis of the epidemiological evidence. Dose-Response. 2020a;18(2):1559325820916949. doi:10.1177/1559325820916949.
  80. Ribeiro CM, Beserra BTS, Silva NG, et al. Exposure to endocrine-disrupting chemicals and anthropometric measures of obesity: a systematic review and meta-analysis. BMJ Open. 2020;10(6):e033509. doi:10.1136/bmjopen-2019-033509.
  81. Ribeiro C, Mendes V, Peleteiro B, et al. Association between the exposure to phthalates and adiposity: a meta-analysis in children and adults. Environ Res. 2019;179:108780. doi:10.1016/j.envres.2019.108780.
  82. Liu P, Yang F, Wang Y, Yuan Z. Perfluorooctanoic acid (PFOA) exposure in early life increases risk of childhood adiposity: a meta-analysis of prospective cohort studies. Int J Environ Res Public Health. 2018;15(10):2070. doi:10.3390/ijerph15102070.
  83. Li MC, Chen PC, Tsai PC, et al. Mortality after exposure to polychlorinated biphenyls and polychlorinated dibenzofurans: a meta-analysis of two highly exposed cohorts. Int J Cancer. 2015;137(6):14271432. doi:10.1002/ijc.29504.
  84. Dunder L, Lejonklou MH, Lind PM, Lind L. Urinary bisphenol a and serum lipids: a meta-analysis of six NHANES examination cycles (2003–2014). J Epidemiol Community Health. 2019;73(11):10121019. doi:10.1136/jech-2019-212555.
  85. Park SH, Lim JE, Park H, Jee SH. Body burden of persistent organic pollutants on hypertension: a meta-analysis. Environ Sci Pollut Res. 2016;23(14):1428414293. doi:10.1007/s11356-016-6568-6.
  86. Wolff MS, Camann D, Gammon M, Stellman SD. Proposed PCB congener groupings for epidemiological studies. Environ Health Perspect. 1997;105(1):1314. doi:10.1289/ehp.9710513.
  87. Fu X, Xu J, Zhang R, Yu J. The association between environmental endocrine disruptors and cardiovascular diseases: a systematic review and meta-analysis. Environ Res. 2020;187:109464. doi:10.1016/j.envres.2020.109464.
  88. Li MC, Chen CH, Guo YL. Phthalate esters and childhood asthma: a systematic review and congener-specific meta-analysis. Environ Pollut. 2017;229:655660. doi:10.1016/j.envpol.2017.06.083.
  89. Luo Y, Deji Z, Huang Z. Exposure to perfluoroalkyl substances and allergic outcomes in children: a systematic review and meta-analysis. Environ Res. 2020;191:110145. doi:10.1016/j.envres.2020.110145.
  90. Wu W, Wu C, Ji C, et al. Association between phthalate exposure and asthma risk: a meta-analysis of observational studies. Int J Hyg Environ Health. 2020b;228:113539. doi:10.1016/j.ijheh.2020.113539.
  91. Gascon M, Sunyer J, Casas M, et al. Prenatal exposure to DDE and PCB 153 and respiratory health in early childhood: a meta-analysis. Epidemiology. 2014;25(4):544553. doi:10.1097/EDE.0000000000000097.
  92. Zani C, Toninelli G, Filisetti B, Donato F. Polychlorinated biphenyls and cancer: an epidemiological assessment. J Environ Sci Health Part C. 2013;31(2):99144. doi:10.1080/10590501.2013.782174.
  93. Zhang J, Huang Y, Wang X, Lin K, Wu K. Environmental polychlorinated biphenyl exposure and breast cancer risk: a meta-analysis of observational studies. PLOS ONE. 2015;10(11):e0142513. doi:10.1371/journal.pone.0142513.
  94. Leng L, Li J, Luo XM, et al. Polychlorinated biphenyls and breast cancer: a congener-specific meta-analysis. Environ Int. 2016;88:133141. doi:10.1016/j.envint.2015.12.022.
  95. Zani C, Ceretti E, Covolo L, Donato F. Do polychlorinated biphenyls cause cancer? A systematic review and meta-analysis of epidemiological studies on risk of cutaneous melanoma and non-Hodgkin lymphoma. Chemosphere. 2017;183:97106. doi:10.1016/j.chemosphere.2017.05.053.
  96. Catalani S, Donato F, Tomasi C, Pira E, Apostoli P, Boffetta P. Occupational and environmental exposure to polychlorinated biphenyls and risk of non-Hodgkin lymphoma: a systematic review and meta-analysis of epidemiology studies. Eur J Cancer Prev. 2019;28(5):441450. doi:10.1097/CEJ.0000000000000463.
  97. World Health Organization, Food and Agriculture Organization of the United Nations. Toxicological and Health Aspects of Bisphenol A. World Health Organization; 2011:160. Accessed February 8, 2023. https://apps.who.int/iris/handle/10665/44624.
  98. Qadeer A, Kirsten KL, Ajmal Z, Jiang X, Zhao X. Alternative plasticizers as emerging global environmental and health threat: another regrettable substitution? Environ Sci Technol. 2022;56(3):14821488. doi:10.1021/acs.est.1c08365.
  99. Erickson MD, Kaley RG. Applications of polychlorinated biphenyls. Environ Sci Pollut Res. 2011;18(2):135151. doi:10.1007/s11356-010-0392-1.
  100. Kimbrough RD, Jensen AA, (eds.). Halogenated Biphenyls, Terphenyls, Naphthalenes, Dibenzodioxins and Related Products. 2nd ed. Elsevier Science Publishers B.V. (Biomedical Division); 2012. https://books.google.com.au/books?hl=en&lr=&id=mOvJCEEzlAgC&oi=fnd&pg=PA3&dq=%20PCBs+use+in+heat+exchangers&ots=xFoaOF0rMW&sig=m8kezsUW6wFGpOuwckjzxssfrY4#v=%20onepage&q=PCBs%20use%20in%20heat%20exchangers&f=false.
  101. NIEHS. Flame Retardants. National Institute of Environmental Health Sciences. Published February 8, 2024. Accessed March 5, 2024. https://www.niehs.nih.gov/health/topics/agents/flame_retardants.
  102. Núñez SS, Moltó J, Conesa JA, Fullana A. Heavy metals, PAHs and POPs in recycled polyethylene samples of agricultural, post-commercial, post-industrial and post-consumer origin. Waste Manag. 2022;144:113121. doi:10.1016/j.wasman.2022.03.016.
  103. Feiteiro J, Mariana M, Cairrão E. Health toxicity effects of brominated flame retardants: from environmental to human exposure. Environ Pollut. 2021;285:117475. doi:10.1016/j.envpol.2021.117475.
  104. EPA. Per- and Polyfluoroalkyl Substances (PFAS). Published March 30, 2016. Accessed June 12, 2023. https://www.epa.gov/pfas.
  105. EPA. EPA Takes Action to Investigate PFAS Contamination. January 14, 2021. Accessed June 12, 2023. https://www.epa.gov/newsreleases/epa-takes-action-investigate-pfas-contamination.
  106. Rand AA, Mabury SA. Perfluorinated carboxylic acids in directly fluorinated high-density polyethylene material. Environ Sci Technol. 2011;45(19):80538059. doi:10.1021/es1043968.
  107. Lambré C, Barat Baviera JM, et al. EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP), Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J. 2023;21(4):e06857. doi:10.2903/j.efsa.2023.6857.
  108. European Union. Commission regulation (EU) 2018/213 of 12 February 2018 on the use of bisphenol a in varnishes and coatings intended to come into contact with food and amending Regulation (EU) No 10/2011 as regards the use of that substance in plastic food contact materials. Off J Eur Union. 2018:54(L26/II). https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018R0213&from=EL.
  109. Food and Drug Administration. Indirect food additives: polymers. 2012;21 CFR 177(77 FR 41899). Accessed May 3, 2022. https://www.federalregister.gov/documents/2012/07/17/2012-17366/indirect-food-additives-polymers.
  110. Catenza CJ, Farooq A, Shubear NS, Donkor KK. A targeted review on fate, occurrence, risk and health implications of bisphenol analogues. Chemosphere. 2021;268:129273. doi:10.1016/j.chemosphere.2020.129273.
  111. Maertens A, Golden E, Hartung T. Avoiding regrettable substitutions: green toxicology for sustainable chemistry. ACS Sustain Chem Eng. 2021;9(23):77497758. doi:10.1021/acssuschemeng.0c09435.
  112. Blum A, Behl M, Birnbaum L, et al. Organophosphate ester flame retardants: are they a regrettable substitution for polybrominated diphenyl ethers? Environ Sci Technol Lett. 2019;6(11):638649. doi:10.1021/acs.estlett.9b00582.
  113. Radke EG, Yost EE, Roth N, Sathyanarayana S, Whaley P. Application of US EPA IRIS systematic review methods to the health effects of phthalates: lessons learned and path forward. Environ Int. 2020;145:105820. doi:10.1016/j.envint.2020.105820.
  114. Zarean M, Keikha M, Feizi A, Kazemitabaee M, Kelishadi R. The role of exposure to phthalates in variations of anogenital distance: a systematic review and meta-analysis. Environ Pollut. 2019;247:172179. doi:10.1016/j.envpol.2019.01.026.
  115. Ejaredar M, Nyanza EC, Ten Eycke K, Dewey D. Phthalate exposure and children’s neurodevelopment: a systematic review. Environ Res. 2015;142:5160. doi:10.1016/j.envres.2015.06.014.
  116. Jeddi MZ, Janani L, Memari AH, Akhondzadeh S, Yunesian M. The role of phthalate esters in autism development: a systematic review. Environ Res. 2016;151:493504. doi:10.1016/j.envres.2016.08.021.
  117. Nilsen FM, Tulve NS. A systematic review and meta-analysis examining the interrelationships between chemical and non-chemical stressors and inherent characteristics in children with ADHD. Environ Res. 2020;180:108884. doi:10.1016/j.envres.2019.108884.
  118. Blakeway H, Van-de-Velde V, Allen VB, et al. What is the evidence for interactions between filaggrin null mutations and environmental exposures in the aetiology of atopic dermatitis?: a systematic review. Br J Dermatol. 2020;183(3):443451. doi:10.1111/bjd.18778.
  119. Fábelová L, Loffredo CA, Klánová J, et al. Environmental ototoxicants, a potential new class of chemical stressors. Environ Res. 2019;171:378394. doi:10.1016/j.envres.2019.01.042.
  120. Sweeney MR, O’Leary KG, Jeney Z, Braunlin MC, Gibb HJ. Systematic review and quality ranking of studies of two phthalate metabolites and anogenital distance, bone health, inflammation, and oxidative stress. Crit Rev Toxicol. 2019;49(4):281301. doi:10.1080/10408444.2019.1605332.
  121. Fu Z, Zhao F, Chen K, et al. Association between urinary phthalate metabolites and risk of breast cancer and uterine leiomyoma. Reprod Toxicol. 2017;74:134142. doi:10.1016/j.reprotox.2017.09.009.
  122. Namat A, Xia W, Xiong C, et al. Association of BPA exposure during pregnancy with risk of preterm birth and changes in gestational age: a meta-analysis and systematic review. Ecotoxicol Environ Saf. 2021;220:112400. doi:10.1016/j.ecoenv.2021.112400.
  123. Liu Z, Lu Y, Zhong K, Wang C, Xu X. The associations between endocrine disrupting chemicals and markers of inflammation and immune responses: a systematic review and meta-analysis. Ecotoxicol Environ Saf. 2022;234:113382. doi:10.1016/j.ecoenv.2022.113382.
  124. Tang N, Wang D, Chen X, Zhang M, Lv W, Wang X. Maternal bisphenol A and triclosan exposure and allergic diseases in childhood: a meta-analysis of cohort studies. Environ Sci Pollut Res. 2022;29(55):8338983403. doi:10.1007/s11356-022-21575-2.
  125. Rooney AA, Boyles AL, Wolfe MS, Bucher JR, Thayer KA. Systematic review and evidence integration for literature-based environmental health science assessments. Environ Health Perspect. 2014;122(7):711718. doi:10.1289/ehp.1307972.
  126. Office of Health Assessment and Translation (OHAT). Handbook for Conducting a Literature-Based Health Assessment Using OHAT Approach for Systematic Review and Evidence Integration. National Institute of Environmental Health Sciences; 2019.
  127. U.S. EPA. Ord Staff Handbook for Developing IRIS Assessments (Public Comment Draft, Nov 2020). U.S. EPA Office of Research and Development, Washington, DC, EPA/600/R-20/137, 2020.
  128. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. JAMA. 2000;283(15):20082012. doi:10.1001/jama.283.15.2008.
DOI: https://doi.org/10.5334/aogh.4459 | Journal eISSN: 2214-9996
Language: English
Submitted on: Apr 17, 2024
Accepted on: Jun 7, 2024
Published on: Aug 19, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Christos Symeonides, Edoardo Aromataris, Yannick Mulders, Janine Dizon, Cindy Stern, Timothy Hugh Barker, Ashley Whitehorn, Danielle Pollock, Tania Marin, Sarah Dunlop, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.