Have a personal or library account? Click to login
Spatial Epidemiological Analysis of Keshan Disease in China Cover

Spatial Epidemiological Analysis of Keshan Disease in China

Open Access
|Sep 2022

Figures & Tables

agh-88-1-3836-g1.png
Figure 1

The spatial distribution of KD endemic areas.

agh-88-1-3836-g2.png
Figure 2

The spatial distribution of the study population in KD endemic areas.

agh-88-1-3836-g3.png
Figure 3

Global spatial autocorrelation analysis of CKD and LKD prevalence in China. A) CKD prevalence; B) LKD prevalence. The left side of the figure represents dispersed areas, the right side represents clustered areas, and the middle represents random areas.

Table 1

Clusters identified by local Moran’s I analysis for LKD prevalence by county in China.

TYPE OF CLUSTERINGPROVINCECOUNTY
H-H clusteringShaanxiLong, Baota, Zhidan, Fu, Luochuan, Yichuan, Huangling
ShanxiPu
Inner MongoliaNingcheng
JilinHuadian, Shulan
GansuKongtong, Li
H-L clusteringSichuanRenhe, Hanyuan, Butuo
YunnanYongshan, Lianghe
ShaanxiQishan
L-H clusteringGansuQinzhou, Zhuanglang, Qingcheng, Huachi, Wudu, Cheng
ShanxiDaning
ShaanxiWangyi
L-L clusteringSichuanZhaojue, Yuexi
ChongqingDianjiang
agh-88-1-3836-g4.png
Figure 4

Clusters identified by local Moran’s I analysis for LKD prevalence by county in China. Red borders in the spatial thematic map represent KD-endemic areas.

Table 2

Clusters identified by Local Getis-Ord Gi* analysis for LKD prevalence by county in China.

TYPE OF CLUSTERINGPROVINCECOUNTY
Hot spot 99% CIShaanxiLong, Zhidan, Fu, Yichuan
GansuQinzhou, Kongtong, Zhuanglang, Huating, Qingcheng, Huachi, Heshui, Wudu, Cheng, Xihe, Li
ShanxiJi, Daning, Pu
Inner MongoliaNingcheng,
JilinHuadian
Hot spot 95% CIShaanxiChangwu, Bin, Baota, Luochuan, Huangling
GansuZhengning
JilinShulan
Hot spot 90% CIShaanxiWangyi, Xunyi, Hua, Ansai, Ganquan, Huanglong
JilinJiaohe, Panshi
Inner MongoliaKelaqinqi
agh-88-1-3836-g5.png
Figure 5

Clusters identified by Local Getis-Ord Gi* analysis for LKD prevalence by county in China. Red borders in the spatial thematic map represent KD-endemic areas. Colors in the spatial thematic map represent hot spots and cold spots of spatial clustering with 90% CI, 95% CI, and 99% CI.

agh-88-1-3836-g6.png
Figure 6

Spatial interpolation analysis of LKD prevalence in China. Red borders in the spatial thematic map represent KD-endemic areas. The blue to red colors in the spatial thematic map indicate gradual increases in LKD prevalence.

Table 3

Spatial regression analysis of LKD and CKD prevalence.

CHARACTERISTICREGRESSION COEFFICIENTSSTANDARD DEVIATIONtP VALUE
LKD
Per capita disposable income–0.00990.0023–4.36<0.0001
CKD
Per capita disposable income–0.00060.0004–1.580.1170

[i] Note: LKD: R2 = 0.1205, Radj2 = 0.1085; CKD: R2 = 0.0252, Radj2 = 0.0118.

DOI: https://doi.org/10.5334/aogh.3836 | Journal eISSN: 2214-9996
Language: English
Submitted on: May 3, 2022
|
Accepted on: Aug 8, 2022
|
Published on: Sep 12, 2022
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Yuehui Jia, Shan Han, Jie Hou, Ruixiang Wang, Guijin Li, Shengqi Su, Lei Qi, Yuanyuan Wang, Linlin Du, Huixin Sun, Shuxiu Hao, Chen Feng, Yanan Wang, Xu Liu, Yuanjie Zou, Yiyi Zhang, Dandan Li, Tong Wang, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.