Have a personal or library account? Click to login
The Effects of Healthcare Quality on the Willingness to Pay More Taxes to Improve Public Healthcare: Testing Two Alternative Hypotheses from the Research Literature Cover

The Effects of Healthcare Quality on the Willingness to Pay More Taxes to Improve Public Healthcare: Testing Two Alternative Hypotheses from the Research Literature

Open Access
|Nov 2019

Figures & Tables

Table 1

Distribution of outcome variables.

CountriesShare of respondents who are willing to pay more taxes to improve public healthcare (%)
Panel A: Eurasia
      Armenia71
      Azerbaijan67
      Belarus48
      Georgia71
      Kazakhstan49
      Kyrgyzstan53
      Moldova67
      Mongolia67
      Russia38
      Tajikistan75
      Ukraine54
      Uzbekistan62
Panel B: South Europe
      Albania53
      Bosnia71
      Bulgaria52
      Croatia63
      Macedonia66
      Romania42
      Serbia54
Panel C: East Europe
      Czech Republic44
      Estonia46
      Hungary34
      Latvia46
      Lithuania41
      Poland34
      Slovakia29
      Slovenia45

[i] Note: Data are rounded up.

Table 2

Distribution of predictors (%).

Absence of doctorsDisrespectful treatmentAbsence of medicationLong waiting timesUnclean facilitiesInformal payments
Panel A: Eurasia
      Armenia471113418
      Azerbaijan5527291147
      Belarus19323070713
      Georgia2381145
      Kazakhstan21223256818
      Kyrgyzstan262537401636
      Moldova10162330528
      Mongolia7192435613
      Russia13262664615
      Tajikistan91431221146
      Ukraine19245054839
      Uzbekistan1192521427
Panel B: Southern Europe
      Albania121324231720
      Bosnia182522491216
      Bulgaria91412421010
      Croatia51574774
      Macedonia242735453223
      Romania51228381326
      Serbia14262454910
Panel C: Eastern Europe
      Czech Republic31165138
      Estonia4725014
      Hungary8132057114
      Latvia31253126
      Lithuania710248114
      Poland1114659410
      Slovakia5148601011
      Slovenia6923914

[i] Note: Data are rounded up.

Table 3

Descriptive statistics for covariates.

VariableDescriptionProportion (%)MeanStd. Dev.
Age: 18–24= 1 if respondents are 18–24 years old, = 0 if otherwise9.74
Age: 25–34= 1 if respondents are 25–34 years old, = 0 if otherwise18.41
Age: 35–44= 1 if respondents are 35–44 years old, = 0 if otherwise17.99
Age: 45–54= 1 if respondents are 45–54 years old, = 0 if otherwise17.34
Age: 55–64= 1 if respondents are 55–64 years old, = 0 if otherwise16.75
Age: 65+= 1 if respondents are 65+ years old, = 0 if otherwise19.76
Female= 1 if respondents are women, = 0 if otherwise58.96
Married= 1 if respondents are married, = 0 if otherwise58.92
University education= 1 if respondents have Bachelor’s degree or higher, = 0 if otherwise20.18
Trust people= 1 if respondents expressed some trust or complete trust in the people, = 0 if otherwise32.69
Trust government= 1 if respondents expressed some trust or complete trust into government, = 0 if otherwise31.06
Trust parliament= 1 if respondents expressed some trust or complete trust into parliament, = 0 if otherwise25.90
Trust political parties= 1 if respondents expressed some trust or complete trust into political parties, = 0 if otherwise19.11
Economic situation improved in the country= 1 if respondents expressed agree or strongly agree that economic situation is better today than it was 4 years ago, = 0 if otherwise26.37
Household wealth statusThe ladder of household wealth where 1 = the poorest households in the country and 10 = the richest households in the country4.3811.679
Believe into redistribution from the rich to the poor= 1 if respondents agree or strongly agree that the gap between the rich and the poor should be reduced, = 0 if otherwise77.28
Health status= 1 if respondents assess their health as very bad to = 5 if respondents assessed their health as very good3.4370.925

[i] Note: Data are rounded up.

Table 4

Binomial logistic regression results for Eurasia (regression coefficients and standard errors in brackets).

ArmeniaAzerbaijanBelarusGeorgiaKazakhstanKyrgyzstanMoldovaMongoliaRussiaTajikistanUkraineUzbekistan
Absence of doctors–1.005*    –0.109      –0.311      0.634      –0.082      –0.214      0.220    –0.406    –0.032    –0.216      0.119      0.163      
(0.430)      (0.356)      (0.193)      (0.678)      (0.177)      (0.178)      (0.313)    (0.326)    (0.187)    (0.300)      (0.157)      (0.220)      
Disrespectful treatment–0.082      0.002      0.119      0.948      0.433*      0.254      –0.033    –0.058    –0.037    –0.344      0.112      –0.793**  
(0.342)      (0.379)      (0.166)      (0.540)      (0.179)      (0.180)      (0.238)    (0.232)    (0.152)    (0.241)      (0.148)      (0.263)      
Absence of medication0.625*    0.349      0.263      –0.204      –0.232      –0.572***–0.262      0.318    0.031    0.089    0.316**  –0.219      
(0.286)      (0.194)      (0.163)      (0.268)      (0.152)      (0.142)      (0.207)    (0.196)    (0.153)    (0.187)      (0.115)      (0.186)      
Long waiting times0.053      0.032      –0.147      –0.036      0.166      0.700***–0.095    0.389*  0.228    0.937***–0.182      –0.441*    
(0.274)      (0.191)      (0.158)      (0.273)      (0.138)      (0.145)      (0.201)    (0.181)    (0.138)    (0.230)      (0.121)      (0.175)      
Unclean facilities0.609      –0.416      0.133      –0.145      –0.202      0.706***0.168    –0.163    0.156    0.272      –0.037      –0.537      
(0.488)      (0.260)      (0.253)      (0.392)      (0.256)      (0.207)      (0.374)    (0.371)    (0.248)    (0.280)      (0.207)      (0.378)      
Informal payments–0.338      0.667***0.309      0.015      0.114      0.151      –0.315    0.450    0.217    0.065      –0.226      0.124      
(0.210)      (0.172)      (0.214)      (0.372)      (0.183)      (0.138)      (0.198)    (0.267)    (0.176)    (0.166)      (0.120)      (0.189)      
Age: 25–340.112      –0.016      –0.017      0.327      –0.752**  –0.405      0.048    0.007    0.002    0.075      –0.318      –0.142      
(0.348)      (0.265)      (0.255)      (0.312)      (0.256)      (0.233)      (0.415)    (0.259)    (0.252)    (0.264)      (0.238)      (0.238)      
Age: 35–440.323      –0.154      0.049      0.660*    –0.564*    –0.354      –0.029    0.032    0.180    –0.079      –0.064      0.130      
(0.381)      (0.280)      (0.262)      (0.328)      (0.251)      (0.243)      (0.418)    (0.277)    (0.252)    (0.263)      (0.244)      (0.246)      
Age: 45–54–0.237      0.116      0.471      0.430      –0.348      –0.050      –0.234    0.426    –0.037    0.033      0.006      –0.062      
(0.358)      (0.294)      (0.277)      (0.329)      (0.259)      (0.249)      (0.406)    (0.290)    (0.265)    (0.282)      (0.249)      (0.262)      
Age: 55–64–0.718*    –0.456      –0.135      0.229      –0.553*    –0.275      –0.256    –0.132    –0.536*  –0.400      –0.257      –0.299      
(0.343)      (0.326)      (0.286)      (0.327)      (0.280)      (0.255)      (0.405)    (0.307)    (0.271)    (0.307)      (0.254)      (0.284)      
Age: 65+–1.226***–0.391      –0.287      –0.226      –0.333      –0.408      –0.434    0.120    –0.249    0.400      –0.618*    –0.843**  
(0.341)      (0.368)      (0.324)      (0.317)      (0.306)      (0.279)      (0.407)    (0.316)    (0.286)    (0.426)      (0.254)      (0.318)      
Female–0.065      0.008      0.049      –0.184      0.212      0.092      –0.149    –0.050    0.113    0.093      –0.031      –0.158      
(0.166)      (0.163)      (0.136)      (0.158)      (0.137)      (0.129)      (0.173)    (0.154)    (0.135)    (0.160)      (0.117)      (0.138)      
Married0.101      0.429*    0.259      –0.143      0.210      –0.125      –0.008    0.034    0.083    –0.292      0.235*    0.142      
(0.174)      (0.191)      (0.144)      (0.164)      (0.137)      (0.154)      (0.187)    (0.171)    (0.130)    (0.221)      (0.117)      (0.171)      
University education0.157      –0.016      0.339*    0.395*    0.145      0.212      0.720**–0.208    0.087    0.400      0.448***0.010      
(0.228)      (0.183)      (0.141)      (0.173)      (0.138)      (0.153)      (0.235)    (0.170)    (0.132)    (0.216)      (0.123)      (0.192)      
Trust people–0.046      0.293      0.221      0.245      0.008      0.168      0.241    0.515**0.380**–0.157      0.332**  0.134      
(0.225)      (0.192)      (0.145)      (0.172)      (0.135)      (0.144)      (0.187)    (0.158)    (0.128)    (0.161)      (0.114)      (0.142)      
Trust government0.807*    0.493*    –0.010      –0.159      0.053      –0.069      –0.268    –0.101    –0.179    0.959***0.192      –0.139      
(0.349)      (0.220)      (0.212)      (0.244)      (0.178)      (0.160)      (0.348)    (0.238)    (0.157)    (0.251)      (0.217)      (0.334)      
Trust parliament0.097      –0.066      0.165      –0.399      0.194      0.657***0.380    –0.160    0.387*  –0.251      –0.035      0.677*    
(0.392)      (0.235)      (0.223)      (0.258)      (0.182)      (0.184)      (0.427)    (0.260)    (0.177)    (0.229)      (0.225)      (0.323)      
Trust political parties0.268      –0.012      –0.393      0.562*    0.046      –0.310      –0.288    0.581*  0.197    0.520**  0.467*    0.310      
(0.344)      (0.212)      (0.202)      (0.235)      (0.152)      (0.175)      (0.349)    (0.279)    (0.183)    (0.181)      (0.188)      (0.204)      
Economic situation improved in the country0.046      0.490**  –0.204      0.803***0.247      –0.180      –0.021    0.232    0.342*  0.221      –0.532**  0.663**  
(0.219)      (0.167)      (0.199)      (0.191)      (0.134)      (0.158)      (0.279)    (0.209)    (0.167)    (0.183)      (0.198)      (0.207)      
Household wealth status–0.035      0.047      0.132**  0.091      0.145***0.197***0.179**0.095    –0.002    –0.127*    0.114**  0.152**  
(0.047)      (0.042)      (0.047)      (0.050)      (0.043)      (0.054)      (0.057)    (0.053)    (0.032)    (0.064)      (0.039)      (0.050)      
Believe into redistribution from the rich to the poor1.098***–0.395*    0.199      0.525**  –0.051      0.235      0.585**0.554*  –0.276*  0.222      –0.176      0.604**  
(0.252)      (0.182)      (0.134)      (0.197)      (0.156)      (0.152)      (0.183)    (0.222)    (0.140)    (0.191)      (0.120)      (0.192)      
Health statues–0.084      –0.059      0.052      0.061      0.036      –0.141      0.029    0.023    0.123    0.171      0.028      –0.056      
(0.088)      (0.102)      (0.099)      (0.090)      (0.094)      (0.089)      (0.108)    (0.101)    (0.098)    (0.111)      (0.083)      (0.105)      
2016 year0.845***0.715***–0.641***0.501**  0.688***0.984***0.027    0.149    –0.245    0.316      –0.471***1.788***
(0.199)      (0.200)      (0.155)      (0.168)      (0.144)      (0.146)      (0.173)    (0.178)    (0.135)    (0.173)      (0.119)      (0.166)      
N1038.000      964.000      1024.000      1027.000      1128.000      1181.000      907.000    849.000    1209.000    914.000      1548.000      1214.000      
Log Likelihood–527.284      –521.234      –668.994      –572.459      –741.790      –720.775      –463.297    –515.905    –766.937    –491.778      –996.000      –660.849      
χ2105.087      65.220      77.822      86.796      79.730      195.642      55.000    46.198    76.244    90.938      120.871      307.725      
p-value0.000      0.000      0.000      0.000      0.000      0.000      0.000    0.003    0.000    0.000      0.000      0.000      

[i] Note: * p < 0.05; ** p < 0.01; *** p < 0.001.

Outcome variable is willingness to pay more taxes to improve public healthcare (= 1, 0 if not willing).

Table 5

Binomial logistic regression results for Southern Europe (regression coefficients and standard errors in brackets).

AlbaniaBosniaBulgariaCroatiaMacedoniaRomaniaSerbia
Absence of doctors0.134      0.113      –0.036      –0.414      0.219    0.102      –0.068      
(0.218)      (0.196)      (0.253)      (0.294)      (0.182)    (0.318)      (0.185)      
Disrespectful treatment      0.161      –0.288      0.379      0.086      0.529**0.571*    0.203      
(0.217)      (0.172)      (0.200)      (0.189)      (0.176)    (0.224)      (0.143)      
Absence of medication0.344*    0.110      0.297      0.298      –0.375*  0.282      –0.104      
(0.167)      (0.179)      (0.213)      (0.248)      (0.160)    (0.182)      (0.143)      
Long waiting times–0.273      0.311*    –0.558***–0.067      –0.164    –0.193      –0.104      
(0.173)      (0.148)      (0.141)      (0.131)      (0.149)    (0.164)      (0.124)      
Unclean facilities0.033      –0.246      0.257      –0.111      –0.191    –0.488*    –0.087      
(0.188)      (0.225)      (0.228)      (0.255)      (0.167)    (0.235)      (0.213)      
Informal payments–0.555**  –0.160      0.277      0.079      0.065    0.151      0.145      
(0.173)      (0.189)      (0.237)      (0.314)      (0.171)    (0.181)      (0.213)      
Age: 25–34–0.010      0.526*    0.628      –0.532      0.313    0.200      –0.042      
(0.268)      (0.260)      (0.347)      (0.311)      (0.251)    (0.345)      (0.296)      
Age: 35–44–0.065      0.755**  0.466      –0.350      0.253    –0.181      –0.029      
(0.283)      (0.280)      (0.337)      (0.314)      (0.265)    (0.342)      (0.298)      
Age: 45–54–0.179      0.475      0.473      –0.429      0.483    –0.080      0.121      
(0.286)      (0.282)      (0.334)      (0.317)      (0.274)    (0.361)      (0.298)      
Age: 55–64–0.346      0.341      0.047      –0.531      0.294    –0.113      –0.167      
(0.296)      (0.279)      (0.341)      (0.314)      (0.277)    (0.350)      (0.293)      
Age: 65+–0.788**  0.476      –0.271      –0.784*    0.419    –0.553      –0.372      
(0.303)      (0.282)      (0.333)      (0.312)      (0.274)    (0.342)      (0.292)      
Female–0.132      –0.020      0.110      –0.069      0.055    –0.131      –0.016      
(0.128)      (0.137)      (0.131)      (0.127)      (0.126)    (0.142)      (0.118)      
Married0.166      0.365*    0.129      0.258      0.041    0.323*    0.095      
(0.179)      (0.148)      (0.135)      (0.132)      (0.152)    (0.149)      (0.127)      
University education0.469**  0.012      0.479*    0.242      0.645**0.625***0.494*    
(0.154)      (0.205)      (0.187)      (0.172)      (0.200)    (0.180)      (0.208)      
Trust people–0.330*    0.465**  –0.011      0.565***0.257    –0.373*    0.316**  
(0.145)      (0.149)      (0.160)      (0.148)      (0.156)    (0.166)      (0.121)      
Trust government–0.044      –0.714*    0.387*    0.017      0.270    0.140      –0.184      
(0.178)      (0.304)      (0.196)      (0.247)      (0.193)    (0.242)      (0.195)      
Trust parliament–0.093      0.490      –0.026      0.808**  0.102    0.283      0.558 *    
(0.193)      (0.324)      (0.280)      (0.283)      (0.209)    (0.306)      (0.222)      
Trust political parties0.081      –0.327      –0.358      0.144      –0.128    0.611      0.049      
(0.183)      (0.307)      (0.303)      (0.330)      (0.207)    (0.352)      (0.249)      
Economic situation improved in the country0.246      –0.456      0.233      0.365      –0.115    0.353      0.034      
(0.152)      (0.257)      (0.217)      (0.203)      (0.183)    (0.235)      (0.186)      
Household wealth status0.266***0.227***0.138**  0.308***0.125**0.048      0.215***
(0.043)      (0.049)      (0.044)      (0.041)      (0.041)    (0.045)      (0.038)      
Believe into redistribution from the rich to the poor0.148      0.004      0.313      0.240      0.400*  –0.218      0.641***
(0.153)      (0.170)      (0.164)      (0.173)      (0.175)    (0.191)      (0.175)      
Health statues–0.118      –0.003      0.056      –0.172*    0.113    0.265**  0.035      
(0.087)      (0.085)      (0.081)      (0.073)      (0.080)    (0.086)      (0.072)      
2016 year0.235      0.711***–0.628***–0.213      –0.125    –0.566***–0.522***
(0.148)      (0.141)      (0.135)      (0.133)      (0.142)    (0.166)      (0.131)      
N1136.000      1201.000      1158.000      1263.000      1274.000    973.000      1366.000      
Log Likelihood–725.438      –663.483      –720.042      –754.666      –769.826    –606.675      –868.921      
χ2123.941      138.121      146.789      139.260      71.349    132.841      122.801      
p-value0.000      0.000      0.000      0.000      0.000    0.000      0.000      

[i] Note: * p < 0.05; ** p < 0.01; *** p < 0.001.

Outcome variable is willingness to pay more taxes to improve public healthcare (=1, 0 if not willing).

Table 6

Binomial logistic regression results for Eastern Europe (regression coefficients and standard errors in brackets).

Czech RepublicEstoniaHungaryLatviaLithuaniaPolandSlovakiaSlovenia
Absence of doctors–0.474      0.420      –0.574*    –0.532      0.126      0.280      0.022      –0.244      
(0.334)      (0.303)      (0.259)      (0.345)      (0.230)      (0.186)      (0.286)      (0.232)      
Disrespectful treatment–0.261      0.120      0.121      0.113      0.050      –0.108      –0.074      0.287      
(0.187)      (0.226)      (0.198)      (0.170)      (0.187)      (0.169)      (0.192)      (0.199)      
Absence of medication0.673**  0.041      –0.211      –0.102      0.520      0.166      –0.189      –0.104      
(0.251)      (0.446)      (0.174)      (0.269)      (0.375)      (0.235)      (0.242)      (0.399)      
Long waiting times0.128      –0.127      –0.037      0.306**  –0.045      0.163      –0.039      –0.150      
(0.117)      (0.117)      (0.130)      (0.118)      (0.110)      (0.113)      (0.136)      (0.111)      
Unclean facilities–0.590      0.905      –0.150      0.335      0.894      –0.412      –0.064      –0.117      
(0.356)      (0.738)      (0.219)      (0.388)      (0.734)      (0.290)      (0.218)      (0.485)      
Informal payments–0.091      –0.495      0.652*    –0.388      0.024      0.377*    0.193      –0.346      
(0.213)      (0.289)      (0.312)      (0.219)      (0.160)      (0.182)      (0.203)      (0.279)      
Age: 25–34–0.235      0.032      0.240      –0.127      –0.111      –0.149      0.089      –0.024      
(0.267)      (0.288)      (0.314)      (0.237)      (0.242)      (0.258)      (0.272)      (0.243)      
Age: 35–44–0.299      –0.413      0.131      –0.362      –0.283      –0.010      0.013      –0.151      
(0.268)      (0.286)      (0.316)      (0.243)      (0.250)      (0.257)      (0.274)      (0.246)      
Age: 45–54–0.371      –0.419      –0.136      0.049      0.127      –0.334      0.082      –0.209      
(0.276)      (0.286)      (0.321)      (0.240)      (0.243)      (0.268)      (0.284)      (0.249)      
Age: 55–64–0.392      –0.635*    0.362      –0.313      –0.077      –0.300      0.004      –0.091      
(0.281)      (0.286)      (0.305)      (0.244)      (0.247)      (0.262)      (0.298)      (0.251)      
Age: 65+–0.542      –0.983***–0.254      –1.007***–0.463      –0.488      0.038      –0.224      
(0.279)      (0.277)      (0.303)      (0.235)      (0.243)      (0.267)      (0.308)      (0.245)      
Female0.093      0.046      0.121      0.193      –0.138      –0.025      0.059      0.179      
(0.115)      (0.123)      (0.127)      (0.110)      (0.112)      (0.108)      (0.130)      (0.105)      
Married0.171      0.269*    0.193      0.223*    0.233*    –0.039      0.124      0.197      
(0.121)      (0.118)      (0.129)      (0.109)      (0.114)      (0.115)      (0.137)      (0.113)      
University education0.441*    0.073      0.039      0.085      0.393***0.226      0.156      0.121      
(0.202)      (0.142)      (0.187)      (0.133)      (0.118)      (0.162)      (0.212)      (0.151)      
Trust people0.124      –0.127      0.058      0.272*    0.067      –0.151      –0.070      0.222      
(0.134)      (0.116)      (0.142)      (0.116)      (0.114)      (0.114)      (0.153)      (0.119)      
Trust government–0.144      0.219      0.491*    0.132      0.031      0.681***–0.067      0.207      
(0.186)      (0.143)      (0.192)      (0.209)      (0.145)      (0.163)      (0.230)      (0.218)      
Trust parliament0.044      0.416**  –0.190      0.045      0.448*    –0.079      0.250      –0.026      
(0.215)      (0.156)      (0.210)      (0.226)      (0.199)      (0.177)      (0.258)      (0.258)      
Trust political parties0.000      0.085      –0.039      0.170      –0.039      –0.030      0.128      –0.040      
(0.231)      (0.161)      (0.223)      (0.262)      (0.204)      (0.176)      (0.252)      (0.256)      
Economic situation improved in the country0.080      0.162      0.083      0.275      0.186      0.316*    0.101      0.638***
(0.136)      (0.143)      (0.172)      (0.146)      (0.140)      (0.127)      (0.162)      (0.187)      
Household wealth status0.171***0.117**  0.186***0.100**  0.088*    0.105**  0.033      0.179***
(0.046)      (0.040)      (0.045)      (0.037)      (0.038)      (0.035)      (0.042)      (0.037)      
Believe into redistribution from the rich to the poor0.043      0.659***–0.220      0.540***–0.049      –0.005      0.027      0.408*    
(0.125)      (0.171)      (0.180)      (0.160)      (0.173)      (0.121)      (0.184)      (0.168)      
Health statues0.078      0.063      0.036      0.141      0.287***0.031      0.299***–0.004      
(0.075)      (0.079)      (0.080)      (0.076)      (0.075)      (0.071)      (0.088)      (0.066)      
2016 year0.203      0.343**  –0.023      –0.307**  0.259*    –0.434***–0.886***–0.168      
(0.129)      (0.133)      (0.138)      (0.117)      (0.125)      (0.111)      (0.141)      (0.115)      
N1370.000      1402.000      1264.000      1674.000      1638.000      1648.000      1344.000      1588.000      
Log Likelihood–914.224      –906.743      –768.303      –1074.938      –1054.626      –1041.064      –773.105      –1054.135      
χ262.253      129.812      74.803      167.145      132.932      111.231      97.146      78.207      
p-value0.000      0.000      0.000      0.000      0.000      0.000      0.000      0.000      

[i] Note: * p < 0.05; ** p < 0.01; *** p < 0.001.

Outcome variable is willingness to pay more taxes to improve public healthcare (= 1, 0 if not willing).

Table 7

Support for the tested hypotheses by countries and quality dimensions.

Health qualitySupport for Hypothesis 1: Reduction in the quality of public healthcare services will weaken support for such servicesSupport for Hypothesis 2: Reduction in the quality of public healthcare services will strengthen support for such services
Absence of doctorsArmenia, HungaryNone
Disrespectful treatmentUzbekistanKazakhstan, Macedonia, Romania
Absence of medicationKyrgyzstan, MacedoniaArmenia, Ukraine, Albania, Czech Republic
Long waiting timesUzbekistan, BulgariaKyrgyzstan, Tajikistan, Bosnia, Latvia
Unclean facilitiesRomaniaKyrgyzstan
Informal paymentsAlbaniaAzerbaijan, Hungary, Poland
DOI: https://doi.org/10.5334/aogh.2462 | Journal eISSN: 2214-9996
Language: English
Published on: Nov 7, 2019
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Nazim Habibov, Rong Luo, Alena Auchynnikava, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.