Have a personal or library account? Click to login
An Overview of Design, Control, Power Management, System Stability and Reliability in Electric Ships Cover

An Overview of Design, Control, Power Management, System Stability and Reliability in Electric Ships

By: Kai Ni,  Yihua Hu and  Xinhua Li  
Open Access
|Dec 2017

References

  1. [1] Hansen J.F., Wendt F., History and state of the art in commercial electric ship propulsion, integrated power systems, and future trends, Proc. IEEE, 2015, 103(12), 2229–2242.10.1109/JPROC.2015.2458990
  2. [2] Dnanes A.K.A., Maritime electrical installations and diesel electric propulsion, ABB report/Lecture note NTNU, 2003.
  3. [3] Skjong E., Volden R., Rodskar E., Molinas M., Johansen T.A., Cunningham J., Past, Present, and future challenges of the marine vessel’s electrical power system, IEEE Trans. Transport. Electr., 2016, 2(4), 522–537.10.1109/TTE.2016.2552720
  4. [4] Sulligoi G., Vicenzutti A., Menis R., All-electric ship design. from electrical propulsion to integrated electrical and electronic power systems, IEEE Trans. Transport. Electr., 2016, 2(4), 507–521.10.1109/TTE.2016.2598078
  5. [5] Vicenzutti A., Bosich D., Giadrossi G., Sulligoi G., The role of voltage controls in modern all-electric ships. Toward the all electric ship, IEEE Electr. Mag., 2015, 3(2), 49–65.10.1109/MELE.2015.2413437
  6. [6] Chalfant J., Early-stage design for electric ship, Proc. IEEE, 2015, 103(12), 2252–2266.10.1109/JPROC.2015.2459672
  7. [7] Keane R.G. Jr., Reducing total ownership cost. Designing inside-out of the hull, Naval Eng. J., 2012, 124(4), 67–80.
  8. [8] Thurkins E.J. Jr., Development of an early stage ship design tool for rapid modeling in paramarine, Nav. E. thesis, Dept. Mech. Eng., Massachusetts Inst. Technology, Cambridge, MA, USA, 2012.
  9. [9] Jurkiewicz D.J., Chalfant J., Chryssostomidis C., Modular IPS machinery arrangement in early-stage naval ship design, Proc. 2013 IEEE Electric Ship Technology Symp. (ESTS), Arlington, VA, USA, 2013, 22–24.
  10. [10] Nestoras K., A tool to create hydrodynamically optimized hull-forms with geometrical constraints from internal arrangements, S.M. thesis, Dept. of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 2013.
  11. [11] Oers B.V., Stapersma D., Hopman J.J., A 3D packing approach for the early stage configuration design of ships, V. Bertram (Ed.), Proc. Int. Conf. Computer Applications and Information Technology in the Maritime Industries (COMPIT), Gubbio, Italy, 2010, 367–381.
  12. [12] Doerry N.H., Clayton D.H., Shipboard electrical power quality of service, Proc. IEEE Electric Ship Technology Symp., Philadelphia, PA, USA, 2005, 274–279.10.1109/ESTS.2005.1524688
  13. [13] Gale P.A., The ship design process, [in:] T. Lamb (Ed.), Ship design and construction, Vol. 1, Alexandria, VA, USA, Society of Naval Architects and Marine Engineers, 2003, Ch. 5.
  14. [14] Mistree F., Smith W.F., Bras B., Allen J.K., Muster D., Decision based design. A contemporary paradigm for ship design, Trans. Society of Naval Architects and Marine Engineers, 1990, 98, 565–597.
  15. [15] Chalfant J., Ferrante M., Chryssostomidis C., Design of a notional ship for use in the development of early-stage design tools, [in:] Proc. 2015 IEEE Electric Ship Technology Symposium (ESTS), Alexandria, VA, USA, June 22–24, 2015, 239–244.
  16. [16] Brown A., Salcedo J., Multiple-objective optimization in naval ship design, Naval Eng. J., 2003, 115(4), 49–61.10.1111/j.1559-3584.2003.tb00242.x
  17. [17] Stepanchick J., Brown A., Revisiting DDGX/DDG-51 concept exploration, Naval Eng. J., 2007, 119(3), 67–88.10.1111/j.1559-3584.2007.00069.x
  18. [18] Ali H., Dougal R., Ouroua A., Hebner R., Steurer M., Andrus M., Langston J., Schoder K., Hovsapian R., Cross-platform validation of notional baseline architecture models of naval electric ship power systems, Proc. IEEE Electric Ship Technology Symp., ESTS, Alexandria, VA, USA, 2011, 78–83.10.1109/ESTS.2011.5770845
  19. [19] Wang Z., Wang X., Cao J., Cheng M., Hu Y., Direct torque control of T-NPC inverters-fed double-stator-winding PMSM drives with SVM, IEEE Trans. Power Electron., 2018, 33(2), 1541–1553.10.1109/TPEL.2017.2689008
  20. [20] Wu P.-H., Chen Y.-T., Cheng P.-T., The delta-connected cascaded H-bridge converter application in distributed energy resources and fault ride through capability analysis, IEEE Trans. Ind. Appl., 2017, 53(5), 4665–4672.10.1109/TIA.2017.2702110
  21. [21] Jankovic M., Costabeber A., Watson A., Clare J.C., Arm-balancing control and experimental validation of a grid-connected MMC with pulsed DC load, IEEE Trans. Ind. Electron., 2017, 64(12), 9180–9190.10.1109/TIE.2017.2711516
  22. [22] Quan Z., Li Y., Harmonic analysis of interleaved voltage source converters and tri-carrier PWM strategies for three-level converters, 18th Workshop on Control and Modeling for Power Electronics (COMPEL), IEEE, Stanford, CA, USA, 2017, 1–7.10.1109/COMPEL.2017.8013285
  23. [23] Liu H., Zhang D., Wang D., Design considerations for output capacitance under inductance mismatches in multiphase buck converters, IEEE Trans. Power Electron., 2017, 32(7), 5004–5015.10.1109/TPEL.2016.2605700
  24. [24] Ariff E.A.R.E., Dordevic O., Jones M., A space vector PWM technique for a three-level symmetrical six-phase drive, IEEE Trans. Ind. Electron., 2017, 64(11), 8396–8405.10.1109/TIE.2017.2703668
  25. [25] Ma H., Chen G., Yi J.H., Meng Q.W., Zhang L., Xu J.P., A single-stage PFM-APWM hybrid modulated soft-switched converter with low bus voltage for high-power LED lighting applications, IEEE Trans. Ind. Electron., 2017, 64(7), 5777–5788.10.1109/TIE.2017.2652361
  26. [26] Ericsen T., Hingorani N., Khersonsky Y., PEBB – power electronics building blocks. From concept to reality, Petroleum and Chemical Industry Conference, 2006, PCIC ’06, Proc. IEEE Industry Applications Society 53rd Annual, Philadelphia, PA, USA, 2006, 12–16.10.1109/PCICON.2006.359706
  27. [27] Yu J., Burgos R., Mehrabadi N.R., Boroyevich D., DC fault current control of modular multilevel converter with SiC-based power electronics building blocks, Electric Ship Technologies Symp., ESTS, IEEE, Arlington, VA, USA, 2017, 30–35.10.1109/ESTS.2017.8069256
  28. [28] Wang F., Zhang Z., Ericsen T., Raju R., Burgos R., Boroyevich D., Advances in power conversion and drives for shipboard systems, Proc. IEEE, 2015, 103(12), 2285–2311.10.1109/JPROC.2015.2495331
  29. [29] Debnath S., Qin J., Bahrani B., Saeedifard M., Barbosa P., Operation, control, and applications of the modular multilevel converter. A review, IEEE Trans. Power Electron., 2015, 30(1), 37–53.10.1109/TPEL.2014.2309937
  30. [30] Perez M.A., Bernet S., Rodriguez J., Kouro S., Lizana R., Circuit topologies, modeling, control schemes, and applications of modular multilevel converters, IEEE Trans. Power Electron., 2015, 30(1), 4–17.10.1109/TPEL.2014.2310127
  31. [31] Cuzner R.M., Soman R., Steurer M.M., Toshon T.A., Faruque M.O., Approach to scalable model development for navy shipboard compatible modular multilevel converters, IEEE J. Emerg. Sel. Topics Power Electron., 2017, 5(1), 28–39.10.1109/JESTPE.2016.2616222
  32. [32] Mo R., Li H., Hybrid energy storage system with active filter function for shipboard MVDC system applications based on isolated modular multilevel DC/DC converter, IEEE J. Emerg. Sel. Topics Power Electron., 2017, 5(1), 79–87.10.1109/JESTPE.2016.2642831
  33. [33] Chen Y., Zhao S., Li Z., Wei X., Kang Y., Modeling and control of the isolated DC-DC modular multilevel converter for electric ship medium voltage direct current power system, IEEE J. Emerg. Sel. Topics Power Electron., 2017, 5(1), 124–139.10.1109/JESTPE.2016.2615071
  34. [34] Chen Y., Li Z., Zhao S., Wei X., Kang Y., Design and implementation of a modular multilevel converter with hierarchical redundancy ability for electric ship MVDC system, IEEE J. Emerg. Sel. Topics Power Electron., 2017, 5(1), 189–202.10.1109/JESTPE.2016.2632858
  35. [35] Millan J., Godignon P., Perpina X., Perez-Tomas A., Rebollo J., A survey of wide bandgap power semiconductor devices, IEEE Trans. Power Electron., 2014, 29(5), 2155–2163.10.1109/TPEL.2013.2268900
  36. [36] Biela J., Schweizer M., Waffler S., Kolar J.W., SiC versus Si. Evaluation of potentials for performance improvement of inverter and DC-DC converter systems by SiC power semiconductors, IEEE Trans. Ind. Electron., 2011, 58(7), 2872–2882.10.1109/TIE.2010.2072896
  37. [37] Mishra U.K., Parikh P., Wu Y.-F., AlGaN/GaN HEMTs – an overview of device operation and applications, Proc. IEEE, 2002, 90(6), 1022–1031.10.1109/JPROC.2002.1021567
  38. [38] Baginski T.A., Thomas K.A., A robust one-shot switch for high power pulse applications, IEEE Trans. Power Electron., 2009, 24(1), 253–259.10.1109/TPEL.2008.2005411
  39. [39] Mitra P., Venayagamoorthy G.K., An adaptive control strategy for DSTATCOM applications in an electric ship power system, IEEE Trans. Power Electron., 2010, 25(1), 95–104.10.1109/TPEL.2009.2024152
  40. [40] Kanellos F.D., Anvari-Moghaddam A., Guerrero J.M., A cost-effective and emission-aware power management system for ships with integrated full electric propulsion, Electric Power Syst. Res., 2017, 150, 63–75.10.1016/j.epsr.2017.05.003
  41. [41] Skjong E., Suul J.A., Rygg A., Johansen T.A., Molinas M., System-wide harmonic mitigation in a diesel-electric ship by model predictive control, IEEE Trans. Ind. Electron., 2016, 63(7), 4008–4019.10.1109/TIE.2016.2532845
  42. [42] Im W.-S., Wang C., Tan L., Liu W., Liu L., Cooperative controls for pulsed power load accommodation in a shipboard power system, IEEE Trans. Power Syst., 2016, 31(6), 5181–5189.10.1109/TPWRS.2016.2538323
  43. [43] Dong D., Pan Y., Lai R., Wu X., Weeber K., Active fault-current foldback control in thyristor rectifier for DC shipboard electrical system, IEEE J. Emerg. Sel. Topics Power Electron., 5(1), 203–212, 2017.10.1109/JESTPE.2016.2640145
  44. [44] Yan C., Venayagamoorthy G.K., Corzine K., Hardware implementation of an AIS-based optimal excitation controller for an electric ship, IEEE Trans. Ind. Appl., 2011, 47(2), 1060–1070.10.1109/TIA.2010.2103540
  45. [45] Valle Y.D., Venayagamoorthy G.K., Mohagheghi S., Hernandez J.C., Harley R.G., Particle swarm optimization. Basic concepts, variants and applications in power systems, IEEE Trans. E, Comput., 2008, 12(2), 171–195.10.1109/TEVC.2007.896686
  46. [46] Yan C., Venayagamoorthy G.K., Corzine K., AIS-based coordinated and adaptive control of generator excitation systems for an electric ship, IEEE Trans. Ind. Electron., 2012, 59(8), 3102–3112.10.1109/TIE.2012.2187411
  47. [47] Zheng F., Wang Q., Lee T.H., Huang X., Robust PI controller design for nonlinear systems via fuzzy modeling approach, IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, 2001, 31(6), 666–675.10.1109/3468.983422
  48. [48] Karimi A., Feliachi A., PSO-tuned adaptive backstepping control of power systems, Proc. IEEE Power Systems Conf. Expo., 2006, 1315–1320.10.1109/PSCE.2006.296495
  49. [49] Mohagheghi S., Valle Y.D., Venayagamoorthy G.K., Harley R.G., A proportional-integrator type adaptive critic design-based neurocontroller for a static compensator in multimachine power systems, IEEE Trans. Ind. Electron., 54(1), 86–96, 2007.10.1109/TIE.2006.888760
  50. [50] Kankanala P., Srivastava S.C., Srivastava A.K., Schulz N.N., Optimal control of voltage and power in a multi-zonal MVDC shipboard power system, IEEE Trans. Power Syst., 2012, 27(2), 642–650.10.1109/TPWRS.2011.2178274
  51. [51] Mashayekh S., Butler-Purry K.L., An integrated security-constrained model-based dynamic power management approach for isolated microgrids in all-electric ships, IEEE Trans. Power Syst., 2015, 30(6), 2934–2945.10.1109/TPWRS.2014.2377741
  52. [52] Tashakori Abkenar A., Nazari A., Jayasinghe S.D.G., Kapoor A., Negnevitsky M., Fuel cell power management using genetic expression programming in all-electric ships, IEEE Trans. En. Conv., 2017, 32(2), 779–787.10.1109/TEC.2017.2693275
  53. [53] Shariatzadeh F., Kumar N., Srivastava A.K., Optimal control algorithms for reconfiguration of shipboard microgrid distribution system using intelligent techniques, IEEE Trans. Ind. Appl., 2017, 53(1), 474–482.10.1109/TIA.2016.2601558
  54. [54] Jin Z., Sulligoi G., Cuzner R., Meng L., Vasquez J.C., Guerrero J.M., Next-generation shipboard DC power system. Introduction smart grid and DC microgrid technologies into maritime electrical networks, IEEE Electr. Mag., 2016, 4(2), 45–57.10.1109/MELE.2016.2544203
  55. [55] Rudraraju S.R., Srivastava A.K., Srivastava S.C., Schulz N.N., Small signal stability analysis of a shipboard MVDC power system, Proc. IEEE Electric Ship Technology Symp., 2009, 135–141.10.1109/ESTS.2009.4906506
  56. [56] Liu X., Li H., Wang Z., A start-up scheme for a three-stage solid-state transformer with minimized transformer current response, IEEE Trans. Power Electron., 2012, 27(12), 4832–4836.10.1109/TPEL.2012.2200047
  57. [57] Xu S., Huang A.Q., Burgos R., Review of solid-state transformer technologies and their application in power distribution systems, IEEE J. Emerg. Sel. Topics Power Electron., 2013, 1(3), 186–198.10.1109/JESTPE.2013.2277917
  58. [58] Khan M.M.S., Faruque M.O., Energy storage management for MVDC power system of all electric ship under different load conditions, Electric Ship Technologies Symposium (ESTS), 2017 IEEE, Arlington, VA, USA, 2017, 192–199.10.1109/ESTS.2017.8069280
  59. [59] Petersen L.J., Hoffman D.J., Borraccini J.P., Swindler S.B., Next generation power and energy. Maybe not so next generation, J. Naval Eng., 2010, 122(4), 59–74.10.1111/j.1559-3584.2010.00280.x
  60. [60] Doerry N., Amy J., MVDC shipboard power system considerations for electromagnetic railguns, Proc. 6th DoD Electromagnetic Railgun Workship, Laurel, MD, USA, 2015, 15–16.
  61. [61] McCoy T.J., Integrated power systems. An outline of requirements and functionalities for ships, Proc. IEEE, 2015, 103(12), 2276–2284.10.1109/JPROC.2015.2480597
  62. [62] Sulligoi G., Tessarolo A., Benucci V., Millerani-Trapani A., Baret M., Luise F., Shipboard power generation. Design and development of a medium-voltage DC generation system, IEEE Ind. Appl. Magazine, 2013, 19(4), 47–55.10.1109/MIAS.2012.2215643
  63. [63] Kanellos F.D., Prousalidis J., Tsekouras G.J., Onboard DC grid employing smart grid technology. Challenges, state of the art and future prospects, IET Electr. Syst. Transport., 2015, 5(1), 1–11.10.1049/iet-est.2013.0056
  64. [64] IEEE recommended practice for 1 to 35 kV medium voltage DC power systems on ships, IEEE Standards Association, 2010, https://standards.ieee.org/findstds/standard/1709-2010.html
  65. [65] Farasat M., Arabali A., Trzynadlowski A.M., Flexible-voltage DC-bus operation for reduction of switching losses in all-electric ship power systems, IEEE Trans. Power Electron., 2014, 29(11), 6151–6161.10.1109/TPEL.2013.2297342
  66. [66] Su C.-L., Lin K.-L., Chen C.-J., Power flow and generator-converter schemes studies in ship MVDC distribution systems, IEEE Trans. Ind. Appl., 2016, 52(1), 50–59.10.1109/TIA.2015.2463795
  67. [67] Seenumani G., Sun J., Peng H., Real-time power management of integrated power systems in all electric ships leveraging multi time scale property, IEEE Trans. Control Syst. Technology, 2011, 232–240.10.1109/TCST.2011.2107909
  68. [68] Seenumani G., Sun J., Peng H., A numerically efficient iterative procedure for hybrid power system optimization using sensitivity functions, Proc. American Control Conf., 2007, 4738–4743.10.1109/ACC.2007.4282890
  69. [69] Feng X., Butler-Purry K.L., Zourntos T., Multi-agent system-based real-time load management for all-electric ship power systems in DC zone level, IEEE Trans. Power Syst., 2012, 27(4), 1719–1728.10.1109/TPWRS.2012.2194314
  70. [70] Feng X., Butler-Purry K.L., Zourntos T., A Multi-agent system framework for real-time electric load management in MVAC all-electric ship power systems, IEEE Trans. Power Syst., 2015, 30(3), 1327–1336.10.1109/TPWRS.2014.2340393
  71. [71] Kanellos F.D., Optimal power management with GHG emissions limitation in all-electric ship power systems comprising energy storage systems, IEEE Trans. Power Syst., 2014, 29(1), 330–339.10.1109/TPWRS.2013.2280064
  72. [72] Kanellos F.D., Tsekouras G.J., Hatziargyriou N.D., Optimal demand-side management and power generation scheduling in an all-electric ship, IEEE Trans. Sust. En., 2014, 5(4), 1166–1175.10.1109/TSTE.2014.2336973
  73. [73] Johansen T.A., Bo T.I., Mathiesen E., Veksler A., Sorensen A.J., Dynamic positioning system as dynamic energy storage on diesel-electric ships, IEEE Trans. Power Syst., 2014, 29(6), 3086–3091.10.1109/TPWRS.2014.2317704
  74. [74] Masaud T.M., Lee K., Sen P.K., An overview of energy storage technologies in electric power systems: What is the future?, North American Power Symp. (NAPS), Arlington, TX, USA, 2010, 1–6.10.1109/NAPS.2010.5619595
  75. [75] Su C.-L., Weng X.-T., Chen C.-J., Power generation controls of fuel cell/energy storage hybrid ship power systems, Transport. Electr. Asia-Pacific (ITEC Asia-Pacific), 2014 IEEE Conference and Expo, Beijing, China, 2014, 1–6.10.1109/ITEC-AP.2014.6940639
  76. [76] Khan M.M.S., Faruque M.O., Newaz A., Fuzzy logic based energy storage management system for MVDC power system of all electric ship, IEEE Trans. En. Conv., 2017, 32(2), 798–809.10.1109/TEC.2017.2657327
  77. [77] Sciberras E.A., Zahawi B., Atkinson D.J., Breijs A., Van Vugt J.H., Managing shipboard energy. A stochastic approach special issue on marine systems electrification, IEEE Trans. Trans. Electr., 2016, 2(4), 538–546.10.1109/TTE.2016.2587682
  78. [78] Banaei M.R., Alizadeh R., Simulation-based modeling and power management of all-electric ships based on renewable energy generation using model predictive control strategy, IEEE Int. Trans. Syst. Mag., 2016, 8(2), 90–103.10.1109/MITS.2016.2533960
  79. [79] Cairoli P., Dougal R.A., New horizons in DC shipboard power systems. New fault protection strategies are essential to the adoption of DC power systems, IEEE Electr. Mag., 2013, 1(2), 38–45.10.1109/MELE.2013.2291431
  80. [80] Ciezki J.G., Ashton R.W., Selection and stability issues associated with a navy shipboard DC zonal electric distribution system, IEEE Trans. Power Del., 2000, 15(2), 665–669.10.1109/61.853002
  81. [81] Sulligoi G., Bosich D., Giadrossi G., Zhu L., Cupelli M., Monti A., Multiconverter medium voltage DC power systems on ships. Constant-power loads instability solution using linearization via state feedback control, IEEE Trans. Smart Grid, 2014, 5(5), 2543–2552.10.1109/TSG.2014.2305904
  82. [82] Jakšić M., Shen Z., Cvetković I., Boroyevich D., Burgos R., Dimarino C., Chen F., Medium-voltage impedance measurement unit for assessing the system stability of electric ships, IEEE Trans. En. Conv., 2017, 32(2), 829–841.10.1109/TEC.2017.2692275
  83. [83] Logan K.P., Intelligent diagnostic requirements of future all-electric ship integrated power system, IEEE Trans. Ind. Appl., 2007, 43(1), 139–149.10.1109/TIA.2006.886993
  84. [84] Mitra P., Venayagamoorthy G.K., Implementation of an intelligent reconfiguration algorithm for an electric ships power system, IEEE Trans. Ind. Appl., 2011, 47(5), 2292–2300.10.1109/TIA.2011.2161849
  85. [85] Bose S., Pal S., Natarajan B., Scoglio C.M., Das S., Schulz N.N., Analysis of optimal reconfiguration of shipboard power systems, IEEE Trans. Power Syst., 2012, 27(1), 189–197.10.1109/TPWRS.2011.2163948
  86. [86] Christopher E., Sumner M., Thomas D.W.P., Wang X., De Wildt F., Fault location in a zonal DC marine power system using active impedance estimation, IEEE Trans. Ind. Appl., 2013, 49(2), 860–865.10.1109/TIA.2013.2243391
DOI: https://doi.org/10.5277/ped170211 | Journal eISSN: 2543-4292 | Journal ISSN: 2451-0262
Language: English
Page range: 5 - 29
Submitted on: Sep 5, 2017
Accepted on: Nov 30, 2017
Published on: Dec 29, 2017
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2017 Kai Ni, Yihua Hu, Xinhua Li, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.