Have a personal or library account? Click to login
Application of Neural Networks to Detect Eccentricity of Induction Motors Cover

Application of Neural Networks to Detect Eccentricity of Induction Motors

By: Paweł Ewert  
Open Access
|Dec 2017

References

  1. [1] Ewert P., Wolkiewicz M., Detection methods overview of induction motor eccentricity using stator current analysis, Scientific Papers of the Institute of Electrical Machines, Drives and Measurements of the Wrocław University of Technology, Studies and Research, 2015, 35, 151–160 (in Polish).
  2. [2] Kowalski C.T., Orlowska-Kowalska T., Application of neural networks for the induction motor faults detection, Trans. of IMCAS Mathematics and Computers in Simulation, 2003, 63(3–5), 435–448.10.1016/S0378-4754(03)00087-9
  3. [3] Bouzid M.B.K., Champenois G., Bellaaj N.M., Signac L., Jelassi K., An effective neural approach for the automatic location of stator interturn faults in induction motor, IEEE Trans. Ind. Electron., 2008, 55(12), 4277–4289.10.1109/TIE.2008.2004667
  4. [4] Awadallah M.A., Morcos M.M., Application of AI tools in fault diagnosis of electrical machines and drives. An overview, IEEE Trans. En. Conv., 2003, 18(2), 245–251.10.1109/TEC.2003.811739
  5. [5] Nandi S., Toliyat H.A., Li X., Condition monitoring and fault diagnosis of electrical motors. A review, IEEE Trans. En. Conv., 2005, 20(4), 719–729.10.1109/TEC.2005.847955
  6. [6] Kowalski C., Kamiński M., Rotor fault detector of the converter-fed induction motor based on RBF neural network, Bull. Polish Acad. Sci., Techn. Sci., 2014, 62(1), 69–76.10.2478/bpasts-2014-0008
  7. [7] Specht D.F., A general regression neural network, IEEE Trans. Neural Netw., 1991, 2(6), 568–576.10.1109/72.9793418282872
  8. [8] Cardoso G. Jr., Rolim J., Zurn H.H., Application of neural network modules to electric power system fault section estimation, IEEE Trans. on Power Delivery, 2004, 19(3), 1034–1041.10.1109/TPWRD.2004.829911
  9. [9] Faiz J., Ebrahimi B.M., Akin B., Toliyat H.A., Comprehensive eccentricity fault diagnosis in induction motors using finite element method, IEEE Trans. Magn., 2009, 45(3), 1764–1767.10.1109/TMAG.2009.2012812
  10. [10] Ewert P., Kamiński M., Kowalski C., Eccentricity detection of the induction motors using general regression neural networks, 10th International Conference on Modeling and Simulation of Electric Machines, Converters and System, ELECTRIMACS 2011, Paris, France, 2011, 1–6.
  11. [11] Ilamparithi T., Nandi S., Comparison of results for eccentric cage induction motor using finite element method and modified winding function approach, Joint International Conference on Power Electronics, Drives and Energy Systems (PEDES), 20–23 December 2010, 1–7.10.1109/PEDES.2010.5712482
  12. [12] Lazaro J., Arias J., Martin J.L., De Alegria I.M., Andreu J., Jimenez J., An implementation of a general regression network on FPGA with direct Matlab link, Proc. IEEE of International Conference on Industrial Technology IEEE-ICIT 2004, 2004, 3, 1150–1155.
  13. [13] Vas P., Artificial intelligence-based electrical machines and drives. Applications of Fuzzy, Neural, Fuzzy-Neural and Genetic Algorithm Based Techniques, Oxford University Press, 1999.
DOI: https://doi.org/10.5277/ped170209 | Journal eISSN: 2543-4292 | Journal ISSN: 2451-0262
Language: English
Page range: 151 - 165
Submitted on: Oct 18, 2017
Accepted on: Nov 22, 2017
Published on: Dec 29, 2017
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2017 Paweł Ewert, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.