Have a personal or library account? Click to login
FUZZY ADAPTIVE CONTROL OF NONLINEAR TWO-MASS SYSTEM Cover

FUZZY ADAPTIVE CONTROL OF NONLINEAR TWO-MASS SYSTEM

By: Karol Wróbel  
Open Access
|Oct 2017

References

  1. [1] WAI R., LIN C.M., HSU C.F., Adaptive fuzzy sliding-mode control for electrical servo drive, Fuzzy Sets and Systems, 2004, 143, 2, 295-310. 10.1016/S0165-0114(03)00199-4
  2. [2] PILTAN F., SULAIMAN N., ALLAHDADI S., DIALAME M., ZARE A., Position Control of Robot Manipulator: Design a Novel SISO Adaptive Sliding Mode Fuzzy PD Fuzzy Sliding Mode Control, Int. Journal of Artificial Intelligence and Expert System, 2011, 2, 5, 208-228.
  3. [3] KNYCHAS S., DERUGO P., SZABAT K., Damping of the torsional vibration using adaptive fuzzy control system with different recurrences, 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), Istambul, 2014, 1526-1531. 10.1109/ISIE.2014.6864841
  4. [4] DERUGO P., KACERKA J., JASTRZĘBSKI M., SZABAT K., Analiza ARN-R PID z warstwą tranzycji Petriego, w sterowaniu silnikiem liniowym z magnesami trwałymi, Poznań University of Technology Academic Journals, 2015, 83, 2015, 31-38.
  5. [5] DERUGO P., KACERKA J., SZABAT K., Adaptacyjny regulator neuronowo-rozmyty z rekurencjami i warstwą tranzycji Petriego w sterowaniu napędem elektrycznym, Przegląd Elektrotechniczny, 2016, 92, 4, 79-84.
  6. [6] SZABAT K., ORŁOWSKA-KOWALSKA T., Vibration Suppression in a Two-Mass Drive System Using PI Speed Controller and Additional Feedbacks - Comparative Study, IEEE Trans. on Industrial Electronics, 2007, 54, 2, 1193-1206. 10.1109/TIE.2007.892608
  7. [7] ORŁOWSKA-KOWALSKA T., DYBKOWSKI M., SZABAT K., Adaptive Sliding-Mode Neuro-Fuzzy Control of the Two-Mass Induction Motor Drive Without Mechanical Sensors, IEEE Transactions on Industrial Electronics, 2009, 57, 2, 553-564. 10.1109/TIE.2009.2036023
  8. [8] SERKIES P., SZABAT K., Application of the MPC to the Position Control of the Two-Mass Drive System, IEEE Transactions on Industrial Electronics, 2012, 60, 9, 3679-3688. 10.1109/TIE.2012.2208435
  9. [9] KAROLEWSKI B., Modelowanie więzów łączących elementy układu napędowego, Przegląd Elektrotechniczny, 2001, 77, 2, 39-43.
  10. [10] OLSSON H., ASTROM K.J., CANUDAS de WIT C., GAFVERT M., LISCHINSKY P., Friction Models and Friction Compensation, European Journal of Control, 1998, 4, 3, 176-195. 10.1016/S0947-3580(98)70113-X
  11. [11] CILIZ M.K., TOMIZUKA M., Friction modeling and compensation for motion control using hybrid neural network models, Engineering Application of AI, 2007, 20, 7, 898-911. 10.1016/j.engappai.2006.12.007
  12. [12] BONA B., INDRI, M., Friction Compensation in Robotics: an Overview, IEEE Conference on Decision and Control, 2005, 4360-4367.
  13. [13] LIN F.J., FUNG R.F., WAI R.J., Comparison of sliding-mode and fuzzy neural network control for motor-toggle servomechanism, IEEE Trans. Mechatronics, 1998, 3, 4, 302-318. 10.1109/3516.736164
  14. [14] SZABAT K., KAMIŃSKI M., ORŁOWSKA-KOWALSKA T., Robust Control of an Electrical Drive using Adaptive Fuzzy Logic Control Structure with Sliding-Mode Compensator, The International Conference on “Computer as a Tool” EUROCON, 2007, Warsaw, 1706-1711. 10.1109/EURCON.2007.4400684
  15. [15] WRÓBEL K., Adaptive fuzzy control based on sets of the second type of the complex drive system operating at low speed, Scientific Papers of the Institute of Electrical Machines, Drives and Measurements of the Wrocław University of Technology, Studies and Research, 2015, 71, 35, 109-117.
  16. [1] WAI R., LIN C.M., HSU C.F., Adaptive fuzzy sliding-mode control for electrical servo drive, Fuzzy
  17. Sets and Systems, 2004, 143, 2, 295-310.10.1016/S0165-0114(03)00199-4
  18. [2] PILTAN F., SULAIMAN N., ALLAHDADI S., DIALAME M., ZARE A., Position Control of Robot Manipulator: Design a Novel SISO Adaptive Sliding Mode Fuzzy PD Fuzzy Sliding Mode Control, Int.
  19. Journal of Artificial Intelligence and Expert System, 2011, 2, 5, 208-228.
  20. [3] KNYCHAS S., DERUGO P., SZABAT K., Damping of the torsional vibration using adaptive fuzzy control
  21. system with different recurrences, 2014 IEEE 23rd International Symposium on Industrial Electronics
  22. (ISIE), Istambul, 2014, 1526-1531.
  23. [4] DERUGO P., KACERKA J., JASTRZĘBSKI M., SZABAT K., Analiza ARN-R PID z warstwą tranzycji Petriego, w sterowaniu silnikiem liniowym z magnesami trwałymi, Poznań University of Technology
  24. Academic Journals, 2015, 83, 2015, 31-38.
  25. [5] DERUGO P., KACERKA J., SZABAT K., Adaptacyjny regulator neuronowo-rozmyty z rekurencjami
  26. i warstwą tranzycji Petriego w sterowaniu napędem elektrycznym, Przegląd Elektrotechniczny, 2016, 92, 4, 79-84.
  27. [6] SZABAT K., ORŁOWSKA-KOWALSKA T., Vibration Suppression in a Two-Mass Drive System Using PI
  28. Speed Controller and Additional Feedbacks - Comparative Study, IEEE Trans. on Industrial Electronics, 2007, 54, 2, 1193-1206.10.1109/TIE.2007.892608
  29. [7] ORŁOWSKA-KOWALSKA T., DYBKOWSKI M., SZABAT K., Adaptive Sliding-Mode Neuro-Fuzzy Control
  30. of the Two-Mass Induction Motor Drive Without Mechanical Sensors, IEEE Transactions on Industrial
  31. Electronics, 2009, 57, 2, 553-564.10.1109/TIE.2009.2036023
  32. [8] SERKIES P., SZABAT K., Application of the MPC to the Position Control of the Two-Mass Drive
  33. System, IEEE Transactions on Industrial Electronics, 2012, 60, 9, 3679-3688.10.1109/TIE.2012.2208435
  34. [9] KAROLEWSKI B., Modelowanie więzów łączących elementy układu napędowego, Przegląd Elektrotechniczny, 2001, 77, 2, 39-43.
  35. [10] OLSSON H., ASTROM K.J., CANUDAS de WIT C., GAFVERT M., LISCHINSKY P., Friction Models and
  36. Friction Compensation, European Journal of Control, 1998, 4, 3, 176-195.10.1016/S0947-3580(98)70113-X
  37. [11] CILIZ M.K., TOMIZUKA M., Friction modeling and compensation for motion control using hybrid
  38. neural network models, Engineering Application of AI, 2007, 20, 7, 898-911.10.1016/j.engappai.2006.12.007
  39. [12] BONA B., INDRI, M., Friction Compensation in Robotics: an Overview, IEEE Conference on Decision
  40. and Control, 2005, 4360-4367.
  41. [13] LIN F.J., FUNG R.F., WAI R.J., Comparison of sliding-mode and fuzzy neural network control for
  42. motor-toggle servomechanism, IEEE Trans. Mechatronics, 1998, 3, 4, 302-318.10.1109/3516.736164
  43. [14] SZABAT K., KAMIŃSKI M., ORŁOWSKA-KOWALSKA T., Robust Control of an Electrical Drive using
  44. Adaptive Fuzzy Logic Control Structure with Sliding-Mode Compensator, The International Conference
  45. on “Computer as a Tool” EUROCON, 2007, Warsaw, 1706-1711.
  46. [15] WRÓBEL K., Adaptive fuzzy control based on sets of the second type of the complex drive system
  47. operating at low speed, Scientific Papers of the Institute of Electrical Machines, Drives and Measurements
  48. of the Wrocław University of Technology, Studies and Research, 2015, 71, 35, 109-117.
  49. [1] WAI R., LIN C.M., HSU C.F., Adaptive fuzzy sliding-mode control for electrical servo drive, Fuzzy
  50. Sets and Systems, 2004, 143, 2, 295-310.10.1016/S0165-0114(03)00199-4
  51. [2] PILTAN F., SULAIMAN N., ALLAHDADI S., DIALAME M., ZARE A., Position Control of Robot Manipulator: Design a Novel SISO Adaptive Sliding Mode Fuzzy PD Fuzzy Sliding Mode Control, Int.
  52. Journal of Artificial Intelligence and Expert System, 2011, 2, 5, 208-228.
  53. [3] KNYCHAS S., DERUGO P., SZABAT K., Damping of the torsional vibration using adaptive fuzzy control
  54. system with different recurrences, 2014 IEEE 23rd International Symposium on Industrial Electronics
  55. (ISIE), Istambul, 2014, 1526-1531.
  56. [4] DERUGO P., KACERKA J., JASTRZĘBSKI M., SZABAT K., Analiza ARN-R PID z warstwą tranzycji Petriego, w sterowaniu silnikiem liniowym z magnesami trwałymi, Poznań University of Technology
  57. Academic Journals, 2015, 83, 2015, 31-38.
  58. [5] DERUGO P., KACERKA J., SZABAT K., Adaptacyjny regulator neuronowo-rozmyty z rekurencjami
  59. i warstwą tranzycji Petriego w sterowaniu napędem elektrycznym, Przegląd Elektrotechniczny, 2016, 92, 4, 79-84.
  60. [6] SZABAT K., ORŁOWSKA-KOWALSKA T., Vibration Suppression in a Two-Mass Drive System Using PI
  61. Speed Controller and Additional Feedbacks - Comparative Study, IEEE Trans. on Industrial Electronics, 2007, 54, 2, 1193-1206.10.1109/TIE.2007.892608
  62. [7] ORŁOWSKA-KOWALSKA T., DYBKOWSKI M., SZABAT K., Adaptive Sliding-Mode Neuro-Fuzzy Control
  63. of the Two-Mass Induction Motor Drive Without Mechanical Sensors, IEEE Transactions on Industrial
  64. Electronics, 2009, 57, 2, 553-564.10.1109/TIE.2009.2036023
  65. [8] SERKIES P., SZABAT K., Application of the MPC to the Position Control of the Two-Mass Drive
  66. System, IEEE Transactions on Industrial Electronics, 2012, 60, 9, 3679-3688.10.1109/TIE.2012.2208435
  67. [9] KAROLEWSKI B., Modelowanie więzów łączących elementy układu napędowego, Przegląd Elektrotechniczny, 2001, 77, 2, 39-43.
  68. [10] OLSSON H., ASTROM K.J., CANUDAS de WIT C., GAFVERT M., LISCHINSKY P., Friction Models and
  69. Friction Compensation, European Journal of Control, 1998, 4, 3, 176-195.10.1016/S0947-3580(98)70113-X
  70. [11] CILIZ M.K., TOMIZUKA M., Friction modeling and compensation for motion control using hybrid
  71. neural network models, Engineering Application of AI, 2007, 20, 7, 898-911.10.1016/j.engappai.2006.12.007
  72. [12] BONA B., INDRI, M., Friction Compensation in Robotics: an Overview, IEEE Conference on Decision
  73. and Control, 2005, 4360-4367.
  74. [13] LIN F.J., FUNG R.F., WAI R.J., Comparison of sliding-mode and fuzzy neural network control for
  75. motor-toggle servomechanism, IEEE Trans. Mechatronics, 1998, 3, 4, 302-318.10.1109/3516.736164
  76. [14] SZABAT K., KAMIŃSKI M., ORŁOWSKA-KOWALSKA T., Robust Control of an Electrical Drive using
  77. Adaptive Fuzzy Logic Control Structure with Sliding-Mode Compensator, The International Conference
  78. on “Computer as a Tool” EUROCON, 2007, Warsaw, 1706-1711.
  79. [15] WRÓBEL K., Adaptive fuzzy control based on sets of the second type of the complex drive system
  80. operating at low speed, Scientific Papers of the Institute of Electrical Machines, Drives and Measurements
  81. of the Wrocław University of Technology, Studies and Research, 2015, 71, 35, 109-117.
  82. [1] WAI R., LIN C.M., HSU C.F., Adaptive fuzzy sliding-mode control for electrical servo drive, Fuzzy
  83. Sets and Systems, 2004, 143, 2, 295-310.10.1016/S0165-0114(03)00199-4
  84. [2] PILTAN F., SULAIMAN N., ALLAHDADI S., DIALAME M., ZARE A., Position Control of Robot Manipulator: Design a Novel SISO Adaptive Sliding Mode Fuzzy PD Fuzzy Sliding Mode Control, Int.
  85. Journal of Artificial Intelligence and Expert System, 2011, 2, 5, 208-228.
  86. [3] KNYCHAS S., DERUGO P., SZABAT K., Damping of the torsional vibration using adaptive fuzzy control
  87. system with different recurrences, 2014 IEEE 23rd International Symposium on Industrial Electronics
  88. (ISIE), Istambul, 2014, 1526-1531.
  89. [4] DERUGO P., KACERKA J., JASTRZĘBSKI M., SZABAT K., Analiza ARN-R PID z warstwą tranzycji Petriego, w sterowaniu silnikiem liniowym z magnesami trwałymi, Poznań University of Technology
  90. Academic Journals, 2015, 83, 2015, 31-38.
  91. [5] DERUGO P., KACERKA J., SZABAT K., Adaptacyjny regulator neuronowo-rozmyty z rekurencjami
  92. i warstwą tranzycji Petriego w sterowaniu napędem elektrycznym, Przegląd Elektrotechniczny, 2016, 92, 4, 79-84.
  93. [6] SZABAT K., ORŁOWSKA-KOWALSKA T., Vibration Suppression in a Two-Mass Drive System Using PI
  94. Speed Controller and Additional Feedbacks - Comparative Study, IEEE Trans. on Industrial Electronics, 2007, 54, 2, 1193-1206.10.1109/TIE.2007.892608
  95. [7] ORŁOWSKA-KOWALSKA T., DYBKOWSKI M., SZABAT K., Adaptive Sliding-Mode Neuro-Fuzzy Control
  96. of the Two-Mass Induction Motor Drive Without Mechanical Sensors, IEEE Transactions on Industrial
  97. Electronics, 2009, 57, 2, 553-564.10.1109/TIE.2009.2036023
  98. [8] SERKIES P., SZABAT K., Application of the MPC to the Position Control of the Two-Mass Drive
  99. System, IEEE Transactions on Industrial Electronics, 2012, 60, 9, 3679-3688.10.1109/TIE.2012.2208435
  100. [9] KAROLEWSKI B., Modelowanie więzów łączących elementy układu napędowego, Przegląd Elektrotechniczny, 2001, 77, 2, 39-43.
  101. [10] OLSSON H., ASTROM K.J., CANUDAS de WIT C., GAFVERT M., LISCHINSKY P., Friction Models and
  102. Friction Compensation, European Journal of Control, 1998, 4, 3, 176-195.10.1016/S0947-3580(98)70113-X
  103. [11] CILIZ M.K., TOMIZUKA M., Friction modeling and compensation for motion control using hybrid
  104. neural network models, Engineering Application of AI, 2007, 20, 7, 898-911.10.1016/j.engappai.2006.12.007
  105. [12] BONA B., INDRI, M., Friction Compensation in Robotics: an Overview, IEEE Conference on Decision
  106. and Control, 2005, 4360-4367.
  107. [13] LIN F.J., FUNG R.F., WAI R.J., Comparison of sliding-mode and fuzzy neural network control for
  108. motor-toggle servomechanism, IEEE Trans. Mechatronics, 1998, 3, 4, 302-318.10.1109/3516.736164
  109. [14] SZABAT K., KAMIŃSKI M., ORŁOWSKA-KOWALSKA T., Robust Control of an Electrical Drive using
  110. Adaptive Fuzzy Logic Control Structure with Sliding-Mode Compensator, The International Conference
  111. on “Computer as a Tool” EUROCON, 2007, Warsaw, 1706-1711.
  112. [15] WRÓBEL K., Adaptive fuzzy control based on sets of the second type of the complex drive system
  113. operating at low speed, Scientific Papers of the Institute of Electrical Machines, Drives and Measurements
  114. of the Wrocław University of Technology, Studies and Research, 2015, 71, 35, 109-117.
  115. [1] WAI R., LIN C.M., HSU C.F., Adaptive fuzzy sliding-mode control for electrical servo drive, Fuzzy
  116. Sets and Systems, 2004, 143, 2, 295-310.10.1016/S0165-0114(03)00199-4
  117. [2] PILTAN F., SULAIMAN N., ALLAHDADI S., DIALAME M., ZARE A., Position Control of Robot Manipulator: Design a Novel SISO Adaptive Sliding Mode Fuzzy PD Fuzzy Sliding Mode Control, Int.
  118. Journal of Artificial Intelligence and Expert System, 2011, 2, 5, 208-228.
  119. [3] KNYCHAS S., DERUGO P., SZABAT K., Damping of the torsional vibration using adaptive fuzzy control
  120. system with different recurrences, 2014 IEEE 23rd International Symposium on Industrial Electronics
  121. (ISIE), Istambul, 2014, 1526-1531.
  122. [4] DERUGO P., KACERKA J., JASTRZĘBSKI M., SZABAT K., Analiza ARN-R PID z warstwą tranzycji Petriego, w sterowaniu silnikiem liniowym z magnesami trwałymi, Poznań University of Technology
  123. Academic Journals, 2015, 83, 2015, 31-38.
  124. [5] DERUGO P., KACERKA J., SZABAT K., Adaptacyjny regulator neuronowo-rozmyty z rekurencjami
  125. i warstwą tranzycji Petriego w sterowaniu napędem elektrycznym, Przegląd Elektrotechniczny, 2016, 92, 4, 79-84.
  126. [6] SZABAT K., ORŁOWSKA-KOWALSKA T., Vibration Suppression in a Two-Mass Drive System Using PI
  127. Speed Controller and Additional Feedbacks - Comparative Study, IEEE Trans. on Industrial Electronics, 2007, 54, 2, 1193-1206.10.1109/TIE.2007.892608
  128. [7] ORŁOWSKA-KOWALSKA T., DYBKOWSKI M., SZABAT K., Adaptive Sliding-Mode Neuro-Fuzzy Control
  129. of the Two-Mass Induction Motor Drive Without Mechanical Sensors, IEEE Transactions on Industrial
  130. Electronics, 2009, 57, 2, 553-564.10.1109/TIE.2009.2036023
  131. [8] SERKIES P., SZABAT K., Application of the MPC to the Position Control of the Two-Mass Drive
  132. System, IEEE Transactions on Industrial Electronics, 2012, 60, 9, 3679-3688.10.1109/TIE.2012.2208435
  133. [9] KAROLEWSKI B., Modelowanie więzów łączących elementy układu napędowego, Przegląd Elektrotechniczny, 2001, 77, 2, 39-43.
  134. [10] OLSSON H., ASTROM K.J., CANUDAS de WIT C., GAFVERT M., LISCHINSKY P., Friction Models and
  135. Friction Compensation, European Journal of Control, 1998, 4, 3, 176-195.10.1016/S0947-3580(98)70113-X
  136. [11] CILIZ M.K., TOMIZUKA M., Friction modeling and compensation for motion control using hybrid
  137. neural network models, Engineering Application of AI, 2007, 20, 7, 898-911.10.1016/j.engappai.2006.12.007
  138. [12] BONA B., INDRI, M., Friction Compensation in Robotics: an Overview, IEEE Conference on Decision
  139. and Control, 2005, 4360-4367.
  140. [13] LIN F.J., FUNG R.F., WAI R.J., Comparison of sliding-mode and fuzzy neural network control for
  141. motor-toggle servomechanism, IEEE Trans. Mechatronics, 1998, 3, 4, 302-318.10.1109/3516.736164
  142. [14] SZABAT K., KAMIŃSKI M., ORŁOWSKA-KOWALSKA T., Robust Control of an Electrical Drive using
  143. Adaptive Fuzzy Logic Control Structure with Sliding-Mode Compensator, The International Conference
  144. on “Computer as a Tool” EUROCON, 2007, Warsaw, 1706-1711.
  145. [15] WRÓBEL K., Adaptive fuzzy control based on sets of the second type of the complex drive system
  146. operating at low speed, Scientific Papers of the Institute of Electrical Machines, Drives and Measurements
  147. of the Wrocław University of Technology, Studies and Research, 2015, 71, 35, 109-117.
  148. [1] WAI R., LIN C.M., HSU C.F., Adaptive fuzzy sliding-mode control for electrical servo drive, Fuzzy
  149. Sets and Systems, 2004, 143, 2, 295-310.10.1016/S0165-0114(03)00199-4
  150. [2] PILTAN F., SULAIMAN N., ALLAHDADI S., DIALAME M., ZARE A., Position Control of Robot Manipulator: Design a Novel SISO Adaptive Sliding Mode Fuzzy PD Fuzzy Sliding Mode Control, Int.
  151. Journal of Artificial Intelligence and Expert System, 2011, 2, 5, 208-228.
  152. [3] KNYCHAS S., DERUGO P., SZABAT K., Damping of the torsional vibration using adaptive fuzzy control
  153. system with different recurrences, 2014 IEEE 23rd International Symposium on Industrial Electronics
  154. (ISIE), Istambul, 2014, 1526-1531.
  155. [4] DERUGO P., KACERKA J., JASTRZĘBSKI M., SZABAT K., Analiza ARN-R PID z warstwą tranzycji Petriego, w sterowaniu silnikiem liniowym z magnesami trwałymi, Poznań University of Technology
  156. Academic Journals, 2015, 83, 2015, 31-38.
  157. [5] DERUGO P., KACERKA J., SZABAT K., Adaptacyjny regulator neuronowo-rozmyty z rekurencjami
  158. i warstwą tranzycji Petriego w sterowaniu napędem elektrycznym, Przegląd Elektrotechniczny, 2016, 92, 4, 79-84.
  159. [6] SZABAT K., ORŁOWSKA-KOWALSKA T., Vibration Suppression in a Two-Mass Drive System Using PI
  160. Speed Controller and Additional Feedbacks - Comparative Study, IEEE Trans. on Industrial Electronics, 2007, 54, 2, 1193-1206.10.1109/TIE.2007.892608
  161. [7] ORŁOWSKA-KOWALSKA T., DYBKOWSKI M., SZABAT K., Adaptive Sliding-Mode Neuro-Fuzzy Control
  162. of the Two-Mass Induction Motor Drive Without Mechanical Sensors, IEEE Transactions on Industrial
  163. Electronics, 2009, 57, 2, 553-564.10.1109/TIE.2009.2036023
  164. [8] SERKIES P., SZABAT K., Application of the MPC to the Position Control of the Two-Mass Drive
  165. System, IEEE Transactions on Industrial Electronics, 2012, 60, 9, 3679-3688.10.1109/TIE.2012.2208435
  166. [9] KAROLEWSKI B., Modelowanie więzów łączących elementy układu napędowego, Przegląd Elektrotechniczny, 2001, 77, 2, 39-43.
  167. [10] OLSSON H., ASTROM K.J., CANUDAS de WIT C., GAFVERT M., LISCHINSKY P., Friction Models and
  168. Friction Compensation, European Journal of Control, 1998, 4, 3, 176-195.10.1016/S0947-3580(98)70113-X
  169. [11] CILIZ M.K., TOMIZUKA M., Friction modeling and compensation for motion control using hybrid
  170. neural network models, Engineering Application of AI, 2007, 20, 7, 898-911.10.1016/j.engappai.2006.12.007
  171. [12] BONA B., INDRI, M., Friction Compensation in Robotics: an Overview, IEEE Conference on Decision
  172. and Control, 2005, 4360-4367.
  173. [13] LIN F.J., FUNG R.F., WAI R.J., Comparison of sliding-mode and fuzzy neural network control for
  174. motor-toggle servomechanism, IEEE Trans. Mechatronics, 1998, 3, 4, 302-318.10.1109/3516.736164
  175. [14] SZABAT K., KAMIŃSKI M., ORŁOWSKA-KOWALSKA T., Robust Control of an Electrical Drive using
  176. Adaptive Fuzzy Logic Control Structure with Sliding-Mode Compensator, The International Conference
  177. on “Computer as a Tool” EUROCON, 2007, Warsaw, 1706-1711.
  178. [15] WRÓBEL K., Adaptive fuzzy control based on sets of the second type of the complex drive system
  179. operating at low speed, Scientific Papers of the Institute of Electrical Machines, Drives and Measurements
  180. of the Wrocław University of Technology, Studies and Research, 2015, 71, 35, 109-117.
  181. [1] WAI R., LIN C.M., HSU C.F., Adaptive fuzzy sliding-mode control for electrical servo drive, Fuzzy
  182. Sets and Systems, 2004, 143, 2, 295-310.10.1016/S0165-0114(03)00199-4
  183. [2] PILTAN F., SULAIMAN N., ALLAHDADI S., DIALAME M., ZARE A., Position Control of Robot Manipulator: Design a Novel SISO Adaptive Sliding Mode Fuzzy PD Fuzzy Sliding Mode Control, Int.
  184. Journal of Artificial Intelligence and Expert System, 2011, 2, 5, 208-228.
  185. [3] KNYCHAS S., DERUGO P., SZABAT K., Damping of the torsional vibration using adaptive fuzzy control
  186. system with different recurrences, 2014 IEEE 23rd International Symposium on Industrial Electronics
  187. (ISIE), Istambul, 2014, 1526-1531.
  188. [4] DERUGO P., KACERKA J., JASTRZĘBSKI M., SZABAT K., Analiza ARN-R PID z warstwą tranzycji Petriego, w sterowaniu silnikiem liniowym z magnesami trwałymi, Poznań University of Technology
  189. Academic Journals, 2015, 83, 2015, 31-38.
  190. [5] DERUGO P., KACERKA J., SZABAT K., Adaptacyjny regulator neuronowo-rozmyty z rekurencjami
  191. i warstwą tranzycji Petriego w sterowaniu napędem elektrycznym, Przegląd Elektrotechniczny, 2016, 92, 4, 79-84.
  192. [6] SZABAT K., ORŁOWSKA-KOWALSKA T., Vibration Suppression in a Two-Mass Drive System Using PI
  193. Speed Controller and Additional Feedbacks - Comparative Study, IEEE Trans. on Industrial Electronics, 2007, 54, 2, 1193-1206.10.1109/TIE.2007.892608
  194. [7] ORŁOWSKA-KOWALSKA T., DYBKOWSKI M., SZABAT K., Adaptive Sliding-Mode Neuro-Fuzzy Control
  195. of the Two-Mass Induction Motor Drive Without Mechanical Sensors, IEEE Transactions on Industrial
  196. Electronics, 2009, 57, 2, 553-564.10.1109/TIE.2009.2036023
  197. [8] SERKIES P., SZABAT K., Application of the MPC to the Position Control of the Two-Mass Drive
  198. System, IEEE Transactions on Industrial Electronics, 2012, 60, 9, 3679-3688.10.1109/TIE.2012.2208435
  199. [9] KAROLEWSKI B., Modelowanie więzów łączących elementy układu napędowego, Przegląd Elektrotechniczny, 2001, 77, 2, 39-43.
  200. [10] OLSSON H., ASTROM K.J., CANUDAS de WIT C., GAFVERT M., LISCHINSKY P., Friction Models and
  201. Friction Compensation, European Journal of Control, 1998, 4, 3, 176-195.10.1016/S0947-3580(98)70113-X
  202. [11] CILIZ M.K., TOMIZUKA M., Friction modeling and compensation for motion control using hybrid
  203. neural network models, Engineering Application of AI, 2007, 20, 7, 898-911.10.1016/j.engappai.2006.12.007
  204. [12] BONA B., INDRI, M., Friction Compensation in Robotics: an Overview, IEEE Conference on Decision
  205. and Control, 2005, 4360-4367.
  206. [13] LIN F.J., FUNG R.F., WAI R.J., Comparison of sliding-mode and fuzzy neural network control for
  207. motor-toggle servomechanism, IEEE Trans. Mechatronics, 1998, 3, 4, 302-318.10.1109/3516.736164
  208. [14] SZABAT K., KAMIŃSKI M., ORŁOWSKA-KOWALSKA T., Robust Control of an Electrical Drive using
  209. Adaptive Fuzzy Logic Control Structure with Sliding-Mode Compensator, The International Conference
  210. on “Computer as a Tool” EUROCON, 2007, Warsaw, 1706-1711.
  211. [15] WRÓBEL K., Adaptive fuzzy control based on sets of the second type of the complex drive system
  212. operating at low speed, Scientific Papers of the Institute of Electrical Machines, Drives and Measurements
  213. of the Wrocław University of Technology, Studies and Research, 2015, 71, 35, 109-117.
DOI: https://doi.org/10.5277/ped160208 | Journal eISSN: 2543-4292 | Journal ISSN: 2451-0262
Language: English
Page range: 133 - 146
Submitted on: Jun 3, 2016
|
Accepted on: Sep 12, 2016
|
Published on: Oct 27, 2017
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2017 Karol Wróbel, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.