Have a personal or library account? Click to login
Prediction of thickness of pantograph contact strips using Artificial Neural Networks Cover

Prediction of thickness of pantograph contact strips using Artificial Neural Networks

Open Access
|May 2020

References

  1. [1] EC Engeenering, Pantograf 160EC,http://www.ec-engineering.pl/produkcja/Zakład_Produkcyjny-Kraków/Pantograf_kolejowy
  2. [2] Abdullah M., Michitsuji Y., Nagai M., Integrated simulation between flexible body of catenary and active control pantograph for contact force variation control, Journal of Mechanical, 2010.10.1299/jmtl.3.166
  3. [3] Abdullah M., Michitsuji Y., Nagai M., Analysis of contact force variation between contact wire and pantograph based on multibody dynamics, Journal of Mechanical, 2010.10.1299/jmtl.3.552
  4. [4] Aboshi M., Precise measurement and estimation method for overhead contact line unevenness, IEEJ Transactions on Industry Applications, 2004.10.1541/ieejias.124.871
  5. [5] Aboshi M., Manabe K., Analyses of contact force fluctuation between catenary and pantograph, Quarterly Report of RTRI, 2000.10.2219/rtriqr.41.182
  6. [6] Allotta B., Pugi L., Bartolini F., An active suspension system for railway pantographs: the T2006 prototype, Engineers, Part F: Journal of Rail, 2009.10.1243/09544097JRRT174
  7. [7] Allotta B., Pugi L., Rindi A., Papi M., Innovative solutions for active railway pantograph, WIT Transactions, 2002.
  8. [8] Chater E., Ghani D., Giri F., Haloua M., Output feedback control of pantograph–catenary system with adaptive estimation of catenary parameters, Journal of Modern Transportation, 2015.10.1007/s40534-015-0085-z
  9. [9] Gostling R.J., Hobbs A.E.W., The interaction of pantograph and overhead equipment: practical applications of a new theoretical method, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 197, no. 1, 1983, 61–69.10.1243/PIME_PROC_1983_197_077_02
  10. [10] Judek S., Karwowski K., Mizan M., Diagnostyka i monitoring odbioru prądu z sieci trakcyjnej, Pojazdy Szynowe, 2011.10.53502/RAIL-139554
  11. [11] Stichel S., Active Control of the Pantograph-Catenary Interaction in a Finite Element Model, 2013.
  12. [12] Sitarz M., Adamiec A., Mańka A., Uszkodzenia węglowych nakładek stykowych pantografów kolejowych stosowanych w Polsce, TTS Technika Transportu Szynowego, 2016.
  13. [13] Majewski W., Zastosowania nakładek węglowych w odbierakach prądu, Prezentacja Instytutu Kolejnictwa.
  14. [14] Rusiecki A., Algorytmy uczenia sieci neuronowych odporne na błędy w danych, Wrocław 2007.
  15. [15] Hagan M.T., Menhaj M.B., Training feedforward networks with the Marquardt algorithm, IEEE transactions on Neural Networks, vol. 5, no. 6, 1994, 989–993.10.1109/72.32969718267874
  16. [16] Marquardt D.W., An algorithm for least-squares estimation of nonlinear parameters, Journal of the society for Industrial and Applied Mathematics, vol. 11, no. 2, 1963, 431–441.10.1137/0111030
DOI: https://doi.org/10.4467/2353737XCT.19.130.11455 | Journal eISSN: 2353-737X | Journal ISSN: 0011-4561
Language: English
Page range: 173 - 180
Submitted on: Dec 11, 2019
Published on: May 16, 2020
Published by: Cracow University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Małgorzata Kuźnar, published by Cracow University of Technology
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.