Have a personal or library account? Click to login
The Application of NIMH Batteries in a Light-Duty Electric Vehicle Cover

The Application of NIMH Batteries in a Light-Duty Electric Vehicle

By: Marcin Noga and  Zdzisław Juda  
Open Access
|May 2020

References

  1. [1] Aditya J.P., Ferdowsi M., Comparison of NiMH and Li-ion batteries in automotive applications, Proceedings of 2008 IEEE Vehicle Power and Propulsion Conference, Harbin, China, 3–5 September 2008, 10.1109/vppc.2008.4677500.10.1109/VPPC.2008.4677500
  2. [2] Bazaras Z., Timofeev B., Vasilieva N., Vilkauskas A., Raslavicius L., Keršys R., Current state of the global electric power engineering, Proceedings of 16th International Scientific Conference Transport Means 2012, Kaunas, Lithuania, 25–26th October 2012, 267–269.
  3. [3] Brooke L, Not dead yet: The resilient ICE looks to 2050, Automotive Engineering, vol. 5(4), 2018, 22–23.
  4. [4] Feng X., Ouyang M., Liu X., Lu L., Xia Y., He X., Thermal runaway mechanism of lithium ion battery for electric vehicles: A review, Energy Storage Materials, vol. 10, 2018, 246–267, 10.1016/j.ensm.2017.05.013.10.1016/j.ensm.2017.05.013
  5. [5] Gaines L., The future of automotive lithium-ion battery recycling: Charting a sustainable course, Sustainable Materials and Technologies, 1–2, 2014, 2–7, 10.1016/j. susmat.2014.10.001.10.1016/j.susmat.2014.10.001
  6. [6] Hao H., Mu Z., Jiang S., Liu Z., Zhao F., GHG Emissions from the Production of Lithium-Ion Batteries for Electric Vehicles in China, Sustainability, vol. 9(4), 2017, 504, 10.3390/ su9040504.10.3390/su9040504
  7. [7] Johnson N.M., Battery technology for CO2 reduction, [in:] Folkson, R., (Ed.): Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance, Woodhead Publishing, Sawston, 2014, 582–631, 978-0-85709-522-0.
  8. [8] Juda Z., Noga M., The influence of battery degradation level on the selected traction parameters of a light-duty electric vehicle, IOP Conf. Ser.: Mater. Sci. Eng., vol. 148, 2016, 012042, 10.1088/1757-899x/148/1/012042.10.1088/1757-899X/148/1/012042
  9. [9] Karden E., Development trends for future automobiles and their demand on the battery, [in:] Garche J., Karden E., Moseley P. T., Rand D.A.J., (Eds.): Lead-Acid Batteries for Future Automobiles, Elsevier, Amsterdam, 2017, 3–25, 978-0-44463-700-0.
  10. [10] Luo W., Zhu S., Gong J., Zhou Z., Research and Development of Fire Extinguishing Technology for Power Lithium Batteries, Procedia Engineering, vol. 211, 2018, 531–537, 10.1016/j.proeng.2017.12.045.10.1016/j.proeng.2017.12.045
  11. [11] Markel T., Brooker A., Hendricks T., Johnson V., Kelly K., Kramer B., O’Keefe M., Sprik S., Wipke K., ADVISOR: A systems analysis tool for advanced vehicle modeling, J of Power Sources, vol. 110(2), 2002, 255-266, 10.1016/s0378-7753(02)00189-1.10.1016/S0378-7753(02)00189-1
  12. [12] Noga M., Various aspects of research of the SI engine with an additional expansion process, MATEC Web of Conferences, vol. 118, 2017, 00017, 10.1051/ matecconf/201711800017.10.1051/matecconf/201711800017
  13. [13] Noga M., Juda Z., Energy Efficiency of a Light-Duty Electric Vehicle, Proceedings of 21st International Scientific Conference Transport Means 2017, Juodkrantė, Lithuania, 20-22 September 2017, 78–85.
  14. [14] Onomura Y., Inazu M., Ito M., Minohara T., Nozaki K., Secondary Battery Development for Hybrid Vehicles at Toyota, Toyota Technical Review, vol. 57(2), 2011, 9–18.
  15. [15] Saga K., Development of Powertrain Technology for Even Better Fuel Efficiency. Toyota Technical Review, vol. 60, 2014, 4–12.
  16. [16] Shin J.W., Kim J.O., Choi J.Y., Oh S.H., Design of 2-speed transmission for electric commercial vehicle, International Journal of Automotive Technology, vol. 15(1), 2014, 145–150, 10.1007/s12239-014-0016-8.10.1007/s12239-014-0016-8
  17. [17] Ślaski G., Ohde B., A statistical analysis of energy and power demand for the tractive purposes of an electric vehicle in urban traffic – an analysis of a short and long observation period, IOP Conf. Ser.: Mater. Sci. Eng., vol. 148, 2016, 012027, 10.1088/1757-899X/148/1/012027.10.1088/1757-899X/148/1/012027
  18. [18] Xing Y., Ma E.W., Tsui K.L., Pecht M., Battery Management Systems in Electric and Hybrid Vehicles, Energies, vol. 4(11), 2011, 1840-1857, doi:10.3390/en4111840.10.3390/en4111840
  19. [19] Yan S., Meng T., Young K., Nei J., A Ni/MH Pouch Cell with High-Capacity Ni(OH)2, Batteries, vol. 3(4), 2017, 38, 10.3390/batteries3040038.10.3390/batteries3040038
  20. [20] Yan S., Nei J., Li P., Young K., Ng, K., Effects of Cs2CO3 Additive in KOH Electrolyte Used in Ni/MH Batteries, Batteries, vol. 3(4), 2017, 41, 10.3390/batteries3040041.10.3390/batteries3040041
  21. [21] Young K.H., Research in Nickel/Metal Hydride Batteries 2016, Batteries, vol. 2(4), 2016, 31, 10.3390/batteries2040031.10.3390/batteries2040031
  22. [22] Young K.H., Ng K.Y.S., Bendersky L.A., A Technical Report of the Robust Affordable Next Generation Energy Storage System-BASF Program, Batteries, vol. 2(1), 2016, 2, 10.3390/ batteries2010002.10.3390/batteries2010002
  23. [23] Zhu J.H., Liu C.T., Pike L.M., Liaw P.K., A thermodynamic interpretation of the size-ratio limits for laves phase formation, Metallurgical and Materials Transactions A, vol. 30(5), 1999, 1449–1452, 10.1007/s11661-999-0292-5.10.1007/s11661-999-0292-5
  24. [24] Zhu W.H., Zhu Y., Davis Z., Tatarchuk B.J., Energy efficiency and capacity retention of Ni– MH batteries for storage applications, Applied Energy, vol. 106, 2013, 307-313, 10.1016/j. apenergy.2012.12.025.10.1016/j.apenergy.2012.12.025
  25. [25] 20 Truths About the GM EV1 Electric Car, http://web.archive.org/web/20090123001021/http://www.greencar.com:80/features/gm-ev1/ (access: 30.06.2018).
  26. [26] ADVISOR Documentation, http://adv-vehicle-sim.sourceforge.net/advisor_doc.html (date of access 2018-06-30).
  27. [27] BU-107: Comparison Table of Secondary Batteries, https://batteryuniversity.com/learn/article/secondary_batteries (access: 15.05.2018).
  28. [28] Patent encumbrance of large automotive NiMH batteries, https://en.wikipedia.org/wiki/Patent_encumbrance_of_large_automotive_NiMH_batteries (access 30.06.2018).
DOI: https://doi.org/10.4467/2353737XCT.19.014.10054 | Journal eISSN: 2353-737X | Journal ISSN: 0011-4561
Language: English
Page range: 197 - 221
Submitted on: Dec 18, 2018
|
Published on: May 16, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Marcin Noga, Zdzisław Juda, published by Cracow University of Technology
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.