Have a personal or library account? Click to login
The Modelling and Analysis of Shock Absorbers with Stroke-Dependent Damping Cover

The Modelling and Analysis of Shock Absorbers with Stroke-Dependent Damping

By: Urszula Ferdek  
Open Access
|May 2020

References

  1. [1] Alonso M., Comas Á., Modelling a twin tube cavitating shock absorber, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 220.8, 2006, 1031–1040.10.1243/09544070D23104
  2. [2] Benaziz M., Nacivet S., Thouverez F., Nonlinear dynamic analysis of a shock absorber hydraulic spring valve, Proceedings of ISMA International Conference on Noise and Vibration Engineering, 2012, 3857–3870.
  3. [3] Deferme S., Stroke dependent bypass. U.S. Patent No. 6,918,473. 19 Jul. 2005.
  4. [4] Farjoud, Ahmadian M., Craft M., Burke W., Nonlinear modelling and experimental characterization of hydraulic dampers: effects of shim stack and orifice parameters on damper performance, Nonlinear Dynamics. 67.2, 2012, 1437–1456.10.1007/s11071-011-0079-2
  5. [5] Ferdek U., Łuczko J., Modelling and analysis of a twin-tube hydraulic shock absorber, Journal of Theoretical and Applied Mechanics. 50.2, 2012, 627–638.
  6. [6] Ferdek U., Łuczko J., Performance comparison of active and semi-active SMC and LQR regulators in a quarter-car model, Journal of Theoretical and Applied Mechanics. 53.4, 2015, 811–822.10.15632/jtam-pl.53.4.811
  7. [7] Ferdek U., Łuczko J., Vibration analysis of a half-car model with semi-active damping, Journal of Theoretical and Applied Mechanics, 54.2, 2016, 321–332.10.15632/jtam-pl.54.2.321
  8. [8] Funke T., Bestle D., Physics-based model of a stroke-dependent shock absorber, Multibody System Dynamics. 30.2, 2013, 221–232.10.1007/s11044-013-9348-9
  9. [9] Götz O. et al., Dashpot with amplitude-dependent shock absorption, U.S. Patent No. 7,441,639. 28 Oct. 2008.
  10. [10] Lee C.T., Moon B.Y., Simulation and experimental validation of vehicle dynamic characteristics for displacement-sensitive shock absorber using fluid-flow modelling, Mechanical Systems and Signal Processing. 20.2, 2006, 373–388.10.1016/j.ymssp.2004.09.006
  11. [11] Nowaczyk M., Vochten J.: Shock absorber with frequency dependent passive valve, U.S. Patent No. 9,441,700. 13 Sep. 2016.
  12. [12] Prabakar R.S., Sujatha C., Narayanan S., Optimal semi-active preview control response of a half car vehicle model with magnetorheological damper, Journal of Sound and Vibration, 326.3, 2009, 400–420.10.1016/j.jsv.2009.05.032
  13. [13] Talbott M.S., Starkey J., An experimentally validated physical model of a high-performance mono-tube damper, SAE Technical Paper, 2002.10.4271/2002-01-3337
  14. [14] Titurus B., Du Bois J., Lieven N., Hansford R., A method for the identification of hydraulic damper characteristics from steady velocity inputs, Mechanical Systems and Signal Processing. 24.8, 2010, 2868–2887.10.1016/j.ymssp.2010.05.021
  15. [15] Ventura P., Ferreira C., Neves C., Morais R., Valente A., Reis M.J., An embedded system to assess the automotive shock absorber condition under vehicle operation, Sensors, 2008 IEEE. IEEE, 2008, 1210–1213.10.1109/ICSENS.2008.4716660
  16. [16] Witters M., Swevers J., Black-box model identification for a continuously variable, electro-hydraulic semi-active damper, Mechanical Systems and Signal Processing, 24.1, 2010, 4–18.10.1016/j.ymssp.2009.03.013
DOI: https://doi.org/10.4467/2353737XCT.18.013.7964 | Journal eISSN: 2353-737X | Journal ISSN: 0011-4561
Language: English
Page range: 163 - 175
Submitted on: Jan 2, 2018
Published on: May 16, 2020
Published by: Cracow University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Urszula Ferdek, published by Cracow University of Technology
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.