Have a personal or library account? Click to login
Comparison of Computing Efficiency of Different Hydraulic Vehicle Damper Models Cover

Comparison of Computing Efficiency of Different Hydraulic Vehicle Damper Models

Open Access
|May 2020

References

  1. [1] Caffarty S., Tomlinson G. R., Characterization of automotive dampers using higher order frequency response functions, Proc. IMechE, Vol. 211, PartD: J. Automobile Engineering, 1997, 181–203.10.1243/0954407971526353
  2. [2] Duym S., Simulation Tools, Modelling and Identification, for an Automotive Shock Absorber in the Context of Vehicle Dynamics, VSD, Vol. 33, 2000, 261–285.10.1076/0042-3114(200004)33:4;1-U;FT261
  3. [3] Dzierżek S., Knapczyk M., Maniowski M., Extending passive dampers functionality for specific ride and handling requirements, Czasopismo Techniczne z. 6–M, Wydawnictwo Politechniki Krakowskiej, 2008, 39–47.
  4. [4] Guzzomi F., et al., Investigation of Damper Valve Dynamics Using Parametric Numerical Methods, Australian Fluid Mechanics Conference, Crown Plaza, Australia, 2007, 1123–1130.
  5. [5] Liberati M., et al., Grey–box Modelling of a Motorcycle Shock absorber, 43rd IEEE Conference on Decision and Control, Atlantis–Bahamas, 2004, 755–760.10.1109/CDC.2004.1428748
  6. [6] Lion A., Loose S., Thermomechanically Coupled Model for Automotive Shock absorbers: Theory, Experiments and Vehicle Simulations on Test Tracks, Vehicle System Dynamics, Vol. 37, no. 4, 2002, 241–261.10.1076/vesd.37.4.241.3528
  7. [7] Lozia Z., Zdanowicz P., Wykorzystanie różnych formalizmów opisu tarcia suchego w modelu ćwiartki samochodu stosowanym do symulacji testu diagn. stanu amortyzatorów, Teka Kom. Motoryzacji, PAN, z. 33–34, Kraków, 2008, 215–222.
  8. [8] Maniowski M., Porównanie efektywności modeli amortyzatorów hydraulicznych, VIII Międzynarodowa Konf. Naukowo–Techn., Problemy Bezpieczeństwa Pojazdów, Kielce–Cedzyna, 2012.
  9. [9] Patel A., Dunne J. F., NARX Neural Network Modelling of Hydraulic Suspension Dampers for Steady–state and Variable Temperature Operation, Vehicle System Dynamics, Vol. 40, no. 5, 2003, 285–328.10.1076/vesd.40.5.285.17911
  10. [10] Ramos J.C., et al., Development of a thermal model for automotive twin–tube shock absorbers, Applied Thermal Engineering, Vol. 25, 2005, 1836–1853.10.1016/j.applthermaleng.2004.11.005
  11. [11] Schiehlen W., Hu B., Spectral simulation and shock absorber identification, Int. Journal of Non–Linear Mechanics, 38, 2003, 161–171.10.1016/S0020-7462(01)00053-1
  12. [12] Van Kasteel R., et al., A new shock absorber model for use in vehicle dynamics studies, Vehicle System Dynamics, Vol. 43, no 9, 2005, 913–631.10.1080/0042311042000266720
  13. [13] Zach C., et al., On the performance of rheological shock absorber models in full vehicle simulation, Vehicle System Dynamics, Vol.45, 2007, 981–999.10.1080/00423110601151968
DOI: https://doi.org/10.4467/2353737XCT.17.143.6894 | Journal eISSN: 2353-737X | Journal ISSN: 0011-4561
Language: English
Page range: 207 - 214
Published on: May 26, 2020
Published by: Cracow University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Michał Maniowski, Slawomir Para, published by Cracow University of Technology
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.