Have a personal or library account? Click to login
Characteristics of selected methods for the synthesis of nanometric zirconium oxide – critical review Cover

Characteristics of selected methods for the synthesis of nanometric zirconium oxide – critical review

Open Access
|May 2020

References

  1. [1] Pulit J., Banach M., Kowalski Z., Chemical reduction as the main method for obtaining nanosilver, Journal of Computational Theoretical Nanoscience 10, 2, 2013, 276–284.10.1166/jctn.2013.2691
  2. [2] Marzec A., Pulit J., Kwaśny J., Banach M., Nanometale–wybrane technologie wytwarzania, Technical Translations vol. 1-Ch/2012, 95–107.
  3. [3] Swihart M. T., Vapor-phase synthesis of nanoparticles, Current Opinion in Colloid and Interface Science 8, 2003, 127–133.10.1016/S1359-0294(03)00007-4
  4. [4] Reguła T., Darłak P., Tchórz A., Lech-Grega M., Próba wytworzenia kompozytu na osnowie CuxAly zbrojonego cząsteczkami Al2O3 przy pomocy procesu mechanosyntezy, Prace Instytutu Odlewnictwa 1, 2010, 29–35.
  5. [5] Goharshadi E. K., Hadadian M., Effect of calcination temperature on structural, vibrational, optical, and rheological properties of zirconia nanoparticles, Ceramics International 38 (3), 2012, 1771–1777.10.1016/j.ceramint.2011.09.063
  6. [6] Xie Z., Ma J., Xu Q., Huang Y., Cheng Y.-B., Effects of dispersants and soluble counter-ions on aqueous dispersability of nano-sized zirconia powder, Ceramics International 30, 2004, 219–224.10.1016/S0272-8842(03)00092-0
  7. [7] Khare J., Srivastava H., Singh C.H.P., Joshi M.P., Kukreja L.M., Vapor phase synthesis of hexagonal shaped single crystal yttria stabilized zirconia nanoparticles using CO2 laser, Ceramics International 39, 2013, 1103–1109.10.1016/j.ceramint.2012.07.033
  8. [8] Simchi A., Ahmadi R., Seyed Reihani S.M., Mahdavi A., Kinetics and mechanisms of nanoparticle formation and growth in vapor phase condensation process, Materials and Design 28, 2007, 850–856.10.1016/j.matdes.2005.10.017
  9. [9] Vasilyeva E.S., Tolochko O.V., Kim B.K., Lee D.W., Kim D.S., Synthesis of tungsten disulphide nanoparticles by the chemical vapor condensation method, Microelectronics Journal 40, 2009, 687–691.10.1016/j.mejo.2008.11.066
  10. [10] Gavillet J., Belmonte T., Hertz D., Michel H., Low temperature zirconia thin film synthesis by a chemical vapour deposition process involving ZrCl4 and O2–H2–Ar microwave post-discharges. Comparison with a conventional CVD hydrolysis process, Thin Solid Films 301, 1997, 35–44.10.1016/S0040-6090(96)09526-0
  11. [11] Srdic V.V., Winterer M., Miehe G., Hahn H., Different zirconia-aluminia nanopowders by modifications of chemical vapour synthesis, Nanostructured Materials 12, 1999, 95–100.10.1016/S0965-9773(99)00073-2
  12. [12] Choi H.-S., Ryu C.-H., Hwang G.-J., Obtention of ZrO2–SiO2 hydrogen permselective membrane by chemical vapor deposition method, Chemical Engineering Journal 232, 2013, 302–309.10.1016/j.cej.2013.07.105
  13. [13] Jiang J., Shen W., Hertz J.L., Fabrication of epitaxial zirconia and ceria thin films with arbitrary dopant and host atom composition, Thin Solid Films 522, 2012, 66–70.10.1016/j.tsf.2012.09.013
  14. [14] Yeh T.-H., Lin R.-D., Cherng J.-S., Significantly enhanced ionic conductivity of yttria-stabilized zirconia polycrystalline nano-film by thermal annealing, Thin Solid Films 544, 2013, 148–151.10.1016/j.tsf.2013.03.134
  15. [15] Hass D.D., Zhao H., Dobbins T., Allen A.J., Slifka A.J., Wadley H.N.G., Multi-scale pore morphology in directed vapor deposited yttria-stabilized zirconia coatings, Materials Science and Engineering A 527, 2010, 6270–6282.10.1016/j.msea.2010.06.033
  16. [16] Li H., Khor K.A., Kumar R., Cheang P., Characterization of hydroxyapatite/nano-zirconia composite coatings deposited by high velocity oxy-fuel (HVOF) spray process, Surface and Coatings Technology 182, 2004, 227–236.10.1016/j.surfcoat.2003.08.081
  17. [17] Joulia A., Bolelli G., Gualtieri E., Lusvarghi L., Valeri S., Vardelle M., Rossignol S., Vardelle A., Comparing the deposition mechanisms in suspension plasma spray (SPS) and solution precursor plasma spray (SPPS) deposition of yttria-stabilised zirconia (YSZ), Journal of the European Ceramic Society 34, 2014, 3925–3940.10.1016/j.jeurceramsoc.2014.05.024
  18. [18] Dong H., Yang G.-J., Cai H.-N., Li C.-X., Li C.-J., Propagation feature of cracks in plasma-sprayed YSZ coatings under gradient thermal cycling, Ceramics International 41, 2015, 3481–3489.10.1016/j.ceramint.2014.10.174
  19. [19] Dong H., Yang G.-J., Cai H.-N., Ding H., Li C.-X., Li C.-J., The influence of temperature gradient across YSZ on thermal cyclic lifetime of plasma-sprayed thermal barrier coatings, Ceramics International 41, 2015, 11046–11056.10.1016/j.ceramint.2015.05.049
  20. [20] Gao L., Wei L., Guo H., Gong S., Xu H., Deposition mechanisms of yttria-stabilized zirconia coatings during plasma spray physical vapor deposition, Ceramics International 42, 2016, 5530–5536.10.1016/j.ceramint.2015.12.111
  21. [21] Smits K., Grigorjeva L., Millers D., Kundzins K., Ignatans R., Grabis J., Monty C., Luminescence properties of zirconia nanocrystals prepared by solar physical vapor deposition, Optical Materials 37, 2014, 251–256.10.1016/j.optmat.2014.06.003
  22. [22] Bernard O., Huntz A.M., Andrieux M., Seiler W., Ji V., Poissonnet S., Synthesis, structure, microstructure and mechanical characteristics of MOCVD deposited zirconia films, Applied Surface Science 253, 2007, 4626–4640.10.1016/j.apsusc.2006.10.025
  23. [23] Hemmer E., Kumakiri I. et al., Nanostructured ZrO2 membranes prepared by liquid-injection chemical vapor deposition, Microporous and Mesoporous Materials 163, 2012, 229–236.10.1016/j.micromeso.2012.06.057
  24. [24] Shi G., Yu F., Wang Y., Li R., Synthesis of growth-controlled ZrO2 nanocrystals via vapor phase hydrolysis, Ceramics International 40, 2014, 13083–13088.10.1016/j.ceramint.2014.05.006
  25. [25] Djurado E., Dessemond L., Roux C., Phase stability of nanostructured tetragonal zirconia polycrystals versus temperature and water vapor, Solid State Ionics 136–137, 2000, 1249–1254.10.1016/S0167-2738(00)00595-6
  26. [26] Liu S., Jiang K., Zhang H., Liu Y., Zhang L., Su B., Liu Y., Nano-nano composite powders of lanthanum–gadolinium zirconate and gadolinia-stabilized zirconia prepared by spray pyrolysis, Surface & Coatings Technology 232, 2013, 419–424.10.1016/j.surfcoat.2013.05.044
  27. [27] Amézaga-Madrid P., Hurtado-Macías A., Antúnez-Flores W., Estrada-Ortiz F., Pizá-Ruiz P., Miki-Yoshida M., Synthesis, microstructural, optical and mechanical properties of yttria stabilized zirconia thin films, Journal of Alloys and Compounds 536S, 2012, S412–S417.10.1016/j.jallcom.2011.11.111
  28. [28] Tao K., Dou H., Sun K., Interfacial coprecipitation to prepare magnetite nanoparticles: Concentration and temperature dependence, Colloids and Surfaces A: Physicochem. Eng. Aspects 320, 2008, 115–122.10.1016/j.colsurfa.2008.01.051
  29. [29] Chen Q., Rondinone A.J., Chakoumakos B.C., Zhang Z.J., Synthesis of superparamagnetic MgFe2O4 nanoparticles by coprecipitation, Journal of Magnetism and Magnetic Materials 194, 1999, 1–7.10.1016/S0304-8853(98)00585-X
  30. [30] Song J.E., Lee D.K., Kim H.W., Kim Y.I., Kang Y.S., Preparation and characterization of monodispersed indium–tin oxide nanoparticles, Colloids and Surfaces A: Physicochem. Eng. Aspects 257–258, 2005, 539–542.10.1016/j.colsurfa.2004.07.037
  31. [31] Benavente R., Salvador M.D., Alcázar M.C., Moreno R., Dense nanostructured zirconia compacts obtained by colloidal filtration of binary mixtures, Ceramics International 38, 2012, 2111–2117.10.1016/j.ceramint.2011.10.051
  32. [32] Chang Q., Zhou J., Wang Y., Meng G., Formation mechanism of zirconia nano-particles containing pores prepared via sol–gel-hydrothermal method, Advanced Powder Technology 21, 2010, 425–430.10.1016/j.apt.2009.11.003
  33. [33] Chintaparty R., Palagiri B., Nagireddy R.R., Immareddy V.R., Madhuri W., Effect of pH on structural, optical and dielectric properties of nano-zirconium oxide prepared by hydrothermal method, Materials Letters 161, 2015, 770–773.10.1016/j.matlet.2015.09.085
  34. [34] Kumar R. V., Ghoshal A.K., Pugazhenthi G., Fabrication of zirconia composite membrane by in-situ hydrothermal technique and its application in separation of methyl orange, Ecotoxicology and Environmental Safety 121, 2015, 73–79.10.1016/j.ecoenv.2015.05.006
  35. [35] Yoshimura M., Sōmiya S., Hydrothermal synthesis of crystallized nano-particles of rare earth-doped zirconia and hafnia, Materials Chemistry and Physics 61, 1999, 1–8.10.1016/S0254-0584(99)00104-2
  36. [36] Chang Q., Zhou J., Wang Y., Meng G., Preparation and characterization of unique zirconia crystals within pores via a sol–gel-hydrothermal method, Advanced Powder Technology 20, 2009, 371–374.10.1016/j.apt.2009.06.001
  37. [37] Behbahani A., Rowshanzamir S., Esmaeilifar A., Hydrothermal synthesis of zirconia nanoparticles from commercial zirconia, Procedia Engineering 42, 2012, 908–917.10.1016/j.proeng.2012.07.483
  38. [38] Huang H.-L., Cao G.Z., Shen I.Y., Hydrothermal synthesis of lead zirconate titanate (PZT or Pb(Zr0.52Ti0.48)O3) nano-particles using controlled ramping and cooling rates, Sensors and Actuators A 214, 2014, 111–119.10.1016/j.sna.2014.04.018
  39. [39] Ji X., Liu C. et al., Lauric acid template synthesis of thermally stable lamellar crystalline zirconia via a reflux-hydrothermal route, Materials Letters 122, 2014, 309–311.10.1016/j.matlet.2014.02.033
  40. [40] Chintaparty C. R., Influence of calcination temperature on structural, optical, dielectric properties of nano zirconium oxide, Optik 127, 2016, 4889–4893.10.1016/j.ijleo.2016.02.014
  41. [41] Ao H., Liu X., Zhang H., Zhou J., Huang X., Feng Z., Xu H., Preparation of scandia stabilized zirconia powder using microwave-hydrothermal method, Journal of Rare Earths 33, 7, 2015, 746–751.10.1016/S1002-0721(14)60480-4
  42. [42] Li C., Li K., Li H., Zhang Y., Ouyang H., Liu L., Sun C., Effect of reaction temperature on crystallization of nanocrystalline zirconia synthesized by microwave-hydrothermal process, Journal of Alloys and Compounds 561, 2013, 23–27.10.1016/j.jallcom.2013.01.157
  43. [43] Porębska K., Powłoki hydrofobowe na baize SiO2 wytwarzane metodą zol-żel, Budownictwo i Architektura 12(4), 2013, 257–267.10.35784/bud-arch.1980
  44. [44] Walczak M., Charakterystyka powłok ceramicznych SiO2 i SiO2–TiO2 otrzymywanych metodą zol-żel, Postępy Nauki i Techniki 9, 2011, 80–90.
  45. [45] Persson C., Unosson E., Ajaxon I., Engstrand J., Engqvist H., Xia W., Nano grain sized zirconia–silica glass ceramics for dental applications, Journal of the European Ceramic Society 32, 2012, 4105–4110.10.1016/j.jeurceramsoc.2012.06.028
  46. [46] Mishra M.K., Tyagi B., Jasra R.V., Synthesis and characterization of nano-crystalline sulfated zirconia by sol–gel method, Journal of Molecular Catalysis A: Chemical 223, 2004, 61–65.10.1016/j.molcata.2003.09.040
  47. [47] Akkari R., Ghorbel A., Essayem N., Figueras F., Synthesis and characterization of mesoporous silica-supported nano-crystalline sulfated zirconia catalysts prepared by a sol–gel process: Effect of the S/Zr molar ratio, Applied Catalysis A: General 328, 2007, 43–51.10.1016/j.apcata.2007.05.014
  48. [48] De la Rosa J.R., Hernandez A., Rojas F., Ledezma J.J., Sol–gel synthesis and characterization of novel La, Mn and Fe doped zirconia: Catalytic combustion activity of trichloroethylene, Colloids and Surfaces A: Physicochem. Eng. Aspects 315, 2008, 147–155.10.1016/j.colsurfa.2007.07.029
  49. [49] López-Quintela M.A., Tojo C., Blanco M.C., García Rio L., Leis J.R., Microemulsion dynamics and reactions in microemulsions, Current Opinion in Colloid & Interface Science 9, 2004, 264–278.10.1016/j.cocis.2004.05.029
  50. [50] Malik M.A., Wani M.Y., Hashim M.A., Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials, Arabian Journal of Chemistry 5, 2012, 397–417.10.1016/j.arabjc.2010.09.027
  51. [51] Margulis-Goshen K., Magdassi S., Organic nanoparticles from microemulsions: Formation and applications, Current Opinion in Colloid & Interface Science 17, 2012, 290–296.10.1016/j.cocis.2012.06.005
  52. [52] Sanchez-Dominguez M., Pemartin K., Boutonnet M., Preparation of inorganic nanoparticles in oil-in-water microemulsions: A soft and versatile approach, Current Opinion in Colloid & Interface Science 17, 2012, 297–305.10.1016/j.cocis.2012.06.007
  53. [53] Duan G.-R., Yang X.-J., Huang G.-H., Lu L.-D., Wang X., Water/span80/Triton X-100/nhexyl alcohol/n-octane microemulsion system and the study of its application for preparing nanosized zirconia, Materials Letters 60, 2006, 1582–1587.10.1016/j.matlet.2005.11.074
  54. [54] Tai C. Y., Hsiao B.-Y., Chiu H.-Y., Preparation of spherical hydrous-zirconia nanoparticles by low temperature hydrolysis in a reverse microemulsion, Colloids and Surfaces A: Physicochem. Eng. Aspects 237, 2004, 105–111.10.1016/j.colsurfa.2004.02.014
  55. [55] López-Quintela M.A., Rivas J., Blanco M.C., Tojo C., Synthesis of nanoparticles in microemulsions, [in:] L. M. Liz-Marzán, P. V. Kamat (Eds.), Nanoscale Materials, Springer US, 2003, 135–155.10.1007/0-306-48108-1_6
  56. [56] Witek E., Kochanowski A., Pazdro M., Bortel E., Mikroemulsje jako źródło nanolateksów i nanoreaktorów, Polimery 51, 2006, 507–516.10.14314/polimery.2006.507
  57. [57] Zhou M., Xu L. et al., Investigation on the preparation and properties of monodispersed Al2O3–ZrO2 nanopowder via Co-precipitation method, Journal of Alloys and Compounds 678, 2016, 337–342.10.1016/j.jallcom.2016.03.265
  58. [58] Hsu Y.-W., Yang K.-H., Chang K.-M., Yeh S.-W., Wang M.-C., Synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanosized powders prepared using a simple co-precipitation process, Journal of Alloys and Compounds 509, 2011, 6864–6870.10.1016/j.jallcom.2011.03.162
  59. [59] Lan L., Chen S., Cao Y., Zhao M., Gong M., Chen Y., Preparation of ceria–zirconia by modified coprecipitation method and its supported Pd-only three-way catalyst, Journal of Colloid and Interface Science 450, 2015, 404–416.10.1016/j.jcis.2015.03.04225863223
  60. [60] Aruna S.T., Arul Paligan B., Balaji N., Praveen Kumar V., Properties of plasma sprayed yttria stabilized zirconia thermal barrier coating prepared from co-precipitation synthesized powder, Ceramics International 40, 2014, 11157–11162.10.1016/j.ceramint.2014.03.143
  61. [61] Wang S., Li X., Zhai Y., Wang K., Preparation of homodispersed nano zirconia, Powder Technology 168, 2006, 53–58.10.1016/j.powtec.2006.07.001
  62. [62] Dudnik E.V., Modern methods for hydrothermal synthesis of ZrO2-based nanocrystalline powders, Powder Metallurgy and Metal Ceramics 48, 3–4, 2009, 238–248.10.1007/s11106-009-9105-z
  63. [63] Caillot T., Salama Z., Chanut N., Cadete Santos Aires F.J., Bennici S., Auroux A., Hydrothermal synthesis and characterization of zirconia based catalysts, Journal of Solid State Chemistry 203, 2013, 79–85.10.1016/j.jssc.2013.04.005
  64. [64] Montazerian M. et al., Bioactivity and cell proliferation in radiopaque gel-derived CaOP2O5-SiO2-ZrO2 glass and glass–ceramic powders, Materials Science and Engineering C 55, 2015, 436–447.10.1016/j.msec.2015.05.065
  65. [65] Montazerian M. et al., Sol–gel synthesis, structure, sintering and properties of bioactive and inert nano-apatite–zirconia glass–ceramics, Ceramics International 41, 2015, 11024–11045.10.1016/j.ceramint.2015.05.047
  66. [66] Miyoshi S., Akao Y., Kuwata N., et al., Water uptake and conduction property of nano-grained yttria-doped zirconia fabricated by ultra-high pressure compaction at room temperature, Solid State Ionics 207, 2012, 21–28.10.1016/j.ssi.2011.11.014
  67. [67] You H.C., Chang C.-M., et al., Facile preparation of sol–gel-derived ultrathin and high-dielectric zirconia films for capacitor devices, Applied Surface Science 258, 2012, 10084–10088.10.1016/j.apsusc.2012.06.079
  68. [68] Díaz-Parralejo A., Macías-García A., Sánchez-González J., Díaz-Díez M.Á., Cuerda-Correa E.M., Influence of the experimental parameters on the synthesis process of yttria-doped zirconia sol-gel films, Surface & Coatings Technology 204, 2010, 2257–2261.10.1016/j.surfcoat.2009.12.015
  69. [69] Boutonnet M, Kizzling J, Stenius P, The preparation of monodisperse colloidal metal particles from microemulsions, Colloids and Surfaces 5, 1982, 209–225.10.1016/0166-6622(82)80079-6
  70. [70] Ma T., Huang Y., Yang J., He J., Zhao L., Preparation of spherical zirconia powder in microemulsion system and its densification behavior, Materials and Design 25, 2004, 515–519.10.1016/j.matdes.2004.01.008
  71. [71] Lee M.H., Tai C.Y., Lu C.J., Synthesis of spherical zirconia by precipitation between two water/oil emulsions, Journal of the European Ceramic Society 19, 1999, 2593–2603.10.1016/S0955-2219(99)00044-8
  72. [72] Tai C.Y., Lee M.H., Wu Y.C., Control of zirconia particle size by using two-emulsion precipitation technique, Chemical Engineering Science 56, 2001, 2389–2398.10.1016/S0009-2509(00)00454-1
  73. [73] Qiu H.B., Gao L., Qiao H.C., Guo J.K., Yan D.S., Nano-crystalline zirconia powder processing through innovative wet-chemical methods, Nanostructured Materials 6, 1995, 373–376.10.1016/0965-9773(95)00074-7
DOI: https://doi.org/10.4467/2353737XCT.17.021.6214 | Journal eISSN: 2353-737X | Journal ISSN: 0011-4561
Language: English
Page range: 105 - 118
Published on: May 23, 2020
Published by: Cracow University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Justyna Kwaśny, Wojciech Balcerzak, published by Cracow University of Technology
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.