References
- Trevaskis NL, Kaminskas LM, Porter CJ. From sewer to saviour - targeting the lymphatic system to promote drug exposure and activity. Nat Rev Drug Discov. 2015;14(11):781-803. https://doi.org/10.1038/nrd4608 PMid:26471369
- Jessen NA, Munk AS, Lundgaard I, Nedergaard M. The glymphatic system: A Beginner’s guide. Neurochem Res. 2015;40(12):2583-99. https://doi.org/10.1007/s11064-015-1581-6 PMid:25947369
- Bacyinski A, Xu M, Wang W, Hu J. The paravascular pathway for brain waste clearance: Current understanding, significance and controversy. Front Neuroanat. 2017;11:101. https://doi.org/10.3389/fnana.2017.00101 PMid:29163074
- McEwen BS. Protective and damaging effects of stress mediators: Central role of the brain. Dialogues Clin Neurosci. 2006;8(4):367-81. https://doi.org/10.31887/DCNS.2006.8.4/bmcewen PMid:17290796
- Weller RO, Subash M, Preston SD, Mazanti I, Carare RO. Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol. 2008;18(2):253-66. https://doi.org/10.1111/j.1750-3639.2008.00133.x PMid:18363936
- Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JA, Perry VH, et al. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: Significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol. 2008;34(2): 131-44. https://doi.org/10.1111/j.1365-2990.2007.00926.x PMid:18208483
- Hawkes CA, Härtig W, Kacza J, Schliebs R, Weller RO, Nicoll JA, et al. Perivascular drainage of solutes is impaired in the aging mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol. 2011;121(4):431-43. https://doi.org/10.1007/s00401-011-0801-7 PMid:21259015
- Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4(147):147ra111. https://doi.org/10.1126/scitranslmed.3003748 PMid:22896675
- Murtha LA, Yang Q, Parsons MW, Levi CR, Beard DJ, Spratt NJ, et al. Cerebrospinal fluid is drained primarily via the spinal canal and olfactory route in young and aged spontaneously hypertensive rats. Fluids Barriers CNS. 2014;11:12. https://doi.org/10.1186/2045-8118-11-12 PMid:24932405
- Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, et al. Clearance systems in the brain-implications for Alzheimer disease. Nat Rev Neurol. 2015;11(8):457-70. https://doi.org/10.1038/nrneurol.2015.119 PMid:26195256
- Simon MJ, Iliff JJ. Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease. Biochim Biophys Acta. 2016;1862(3):442-51. https://doi.org/10.1016/j.bbadis.2015.10.014 PMid:26499397
- Lundgaard I, Lu ML, Yang E, Peng W, Mestre H, Hitomi E, et al. Glymphatic clearance controls state-dependent changes in brain lactate concentration. J Cereb Blood Flow Metab. 2017;37(6):2112-24. https://doi.org/10.1177/0271678X16661202 PMid:27481936
- Iliff JJ, Chen MJ, Plog BA, Zeppenfeld DM, Soltero M, Yang L, et al. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci. 2014;34(49):16180-93. https://doi.org/10.1523/JNEUROSCI.3020-14.2014 PMid:25471560
- Matsumae M, Atsumi H, Hirayama A, Hayashi N, Sano F, Taiozawa K, et al. A new look at cerebrospinal fluid motion. No Shinkei Geka. 2016;44:909-24.
- Achariyar TM, Li B, Peng W, Verghese PB, Shi Y, McConnell E, et al. Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation. Mol Neurodegener. 2016;11(1):74.
- Rangroo Thrane V, Thrane AS, Plog BA, Thiyagarajan M, Iliff JJ, Deane R, et al. Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Sci Rep. 2013;3:2582. https://doi.org/10.1038/srep02582 PMid:24002448
- Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 2014;76(6):845-61. https://doi.org/10.1002/ana.24271 PMid:25204284
- Sullan MJ, Asken BM, Jaffee MS, DeKosky ST, Bauer RM. Glymphatic system disruption as a mediator of brain trauma and chronic traumatic encephalopathy. Neurosci Biobehav Rev. 2018;84:316-24. https://doi.org/10.1016/j.neubiorev.2017.08.016 PMid:28859995
- Benveniste H, Liu X, Koundal S, Sanggaard S, Lee H, Wardlaw J. The glymphatic system and waste clearance with brain aging: A review. Gerontology. 2019;65(2):106-19. https://doi.org/10.1159/000490349 PMid:29996134
- Wei F, Song J, Zhang C, Lin J, Xue R, Shan LD, et al. Chronic stress impairs the aquaporin-4-mediated glymphatic transport through glucocorticoid signaling. Psychopharmacology (Berl). 2019;236(4):1367-84. https://doi.org/10.1007/s00213-018-5147-6 PMid:30607477
- Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev. 2000;21(1):55-89. https://doi.org/10.1210/edrv.21.1.0389 PMid:10696570
- Bernstein R. The Mind and Mental Health: How Stress Affects the Brain. California: Touro University Worldwide; 2016.
- McEwen BS, Bowles NP, Gray JD, Hill MN, Hunter RG, Karatsoreos IN, et al. Mechanisms of stress in the brain. Nat Neurosci. 2015;18(10):1353-63. https://doi.org/10.1038/nn.4086 PMid:26404710
- Horner HC, Packan DR, Sapolsky RM. Glucocorticoids inhibit glucose transport in cultured hippocampal neurons and glia. Neuroendocrinology. 1990;52(1):57-64. https://doi.org/10.1159/000125539 PMid:2118608
- Virgin CE Jr., Ha TP, Packan DR, Tombaugh GC, Yang SH, Horner HC, et al. Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: Implications for glucocorticoid neurotoxicity. J Neurochem. 1991;57(4):1422-8. https://doi.org/10.1111/j.1471-4159.1991.tb08309.x PMid:1680166
- Doyle P, Guillaume-Gentil C, Rohner-Jeanrenaud F, Jeanrenaud B. Effects of corticosterone administration on local cerebral glucose utilization of rats. Brain Res. 1994; 645(1-2):225-30. https://doi.org/10.1016/0006-8993(94)91655-1 PMid:8062085
- Sapolsky RM. Why stress is bad for your brain. Science. 1996;273(5276):749-50. https://doi.org/10.1126/science.273.5276.749 PMid:8701325
- Newcomer JW, Craft S, Hershey T, Askins K, Bardgett ME. Glucocorticoid-induced impairment in declarative memory performance in adult humans. J Neurosci. 1994;14(4):2047-53. https://doi.org/10.1523/JNEUROSCI.14-04-02047.1994 PMid:8198631
- Brady KT, Sonne SC. The role of stress in alcohol use, alcoholism treatment, and relapse. Alcohol Res Health. 1999;23(4):263-71.
- Lundgaard I, Wang W, Eberhardt A, Vinitsky HS, Reeves C, Peng S, et al. Beneficial effects of low alcohol exposure, but adverse effects of high alcohol intake on glymphatic function. Sci Rep. 2018;8(1):2246. https://doi.org/10.1038/s41598-018-20424-y PMid:29396480
- Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373-7. https://doi.org/10.1126/science.1241224 PMid:24136970
- Kalimo R, Tenkanen L, Härmä M, Poppius E, Heinsalmi P. Job stress and sleep disorders: Findings from the Helsinki Heart Study. Stress Med. 2000;16(2):65-75.
- Akerstedt T, Kecklund G, Axelsson J. Impaired sleep after bedtime stress and worries. Biol Psychol. 2007;76(3):170-3. https://doi.org/10.1016/j.biopsycho.2007.07.010 PMid:17884278
- Bernardy NC, Friedman MJ. A Practical Guide to PTSD Treatment: Pharmacological and Psychotherapeutic Approaches. A Practical Guide to PTSD Treatment: Pharmacological and Psychotherapeutic Approaches. United States: American Psychological Association; 2014.
- Jansen AS, Van Nguyen X, Karpitskiy V, Mettenleiter TC, Loewy AD. Central command neurons of the sympathetic nervous system: Basis of the fight-or-flight response. Science. 1995;270(5236):644-6.
- McEwen BS. Protective and damaging effects of stress mediators. N Engl J Med. 1998;338(3):171-9. https://doi.org/10.1056/NEJM199801153380307 PMid:9428819
- Lindquist TL, Beilin LJ, Knuiman MW. Influence of lifestyle, coping, and job stress on blood pressure in men and women. Hypertension. 1997;29(1 Pt 1):1-7. https://doi.org/10.1161/01.hyp.29.1.1 PMid:9039072
- Kaplan JR, Manuck SB, Clarkson TB, Lusso FM, Taub DM, Miller EW. Social stress and atherosclerosis in normocholesterolemic monkeys. Science. 1983;220(4598):733-5. https://doi.org/10.1126/science.6836311 PMid:6836311
- Dallman MF. Stress-induced obesity and the emotional nervous system. Trends Endocrinol Metab. 2010;21(3):159-65. https://doi.org/10.1016/j.tem.2009.10.004 PMid:19926299
- Hammen C. Stress and depression. Annu Rev Clin Psychol. 2005;1:293-319. https://doi.org/10.1146/annurev.clinpsy.1.102803.143938 PMid:17716090
- Goeders NE. The impact of stress on addiction. Eur Neuropsychopharmacol. 2003;13(6):435-41. https://doi.org/10.1016/j.euroneuro.2003.08.004 PMid:14636959
- Shin LM, Liberzon I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology. 2010;35(1): 169-91. https://doi.org/10.1038/npp.2009.83 PMid:19625997
- Berridge CW, Waterhouse BD. The locus coeruleusnoradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev. 2003;42(1):33-84. https://doi.org/10.1016/s0165-0173(03)00143-7 PMid:12668290
- O’Donnell J, Ding F, Nedergaard M. Distinct functional states of astrocytes during sleep and wakefulness: Is norepinephrine the master regulator? Curr Sleep Med Rep. 2015;1(1):1-8. https://doi.org/10.1007/s40675-014-0004-6 PMid:26618103
- Lee H, Xie L, Yu M, Kang H, Feng T, Deane R, et al. The Effect of body posture on brain glymphatic transport. J Neurosci. 2015;35(31):11034-44. https://doi.org/10.1523/JNEUROSCI.1625-15.2015 PMid:26245965
- Akerstedt T. Psychosocial stress and impaired sleep. Scand J Work Environ Health 2006;32(6):493-501.
- Fu H, Hardy J, Duff KE. Selective vulnerability in neurodegenerative diseases. Nat Neurosci. 2018;21(10): 1350-8. https://doi.org/10.1038/s41593-018-0221-2 PMid:30250262
- Ross CA, Poirier MA. Protein aggregation and neurodegenerative disease. Nat Med. 2004;10 Suppl: S10-7. http://doi.org/10.1038/nm1066 PMid:15272267
- Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci. 1991;12(10):383-8. https://doi.org/10.1016/0165-6147(91)90609-v PMid:1763432
- Peng W, Achariyar TM, Li B, Liao Y, Mestre H, Hitomi E, et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol Dis. 2016;93:215-25. https://doi.org/10.1016/j.nbd.2016.05.015 PMid:27234656
- Zuroff L, Daley D, Black KL, Koronyo-Hamaoui M. Clearance of cerebral Aβ in Alzheimer’s disease: Reassessing the role of microglia and monocytes. Cell Mol Life Sci. 2017;74(12):2167-201. https://doi.org/10.1007/s00018-017-2463-7 PMid:28197669
- Qi XM, Ma JF. The role of amyloid beta clearance in cerebral amyloid angiopathy: More potential therapeutic targets. Transl Neurodegener. 2017;6:22. https://doi.org/10.1186/s40035-017-0091-7 PMid:28824801
- Wang LY, Murphy RR, Hanscom B, Li G, Millard SP, Petrie EC, et al. Cerebrospinal fluid norepinephrine and cognition in subjects across the adult age span. Neurobiol Aging. 2013;34(10):2287-92. https://doi.org/10.1016/j.neurobiolaging.2013.04.007 PMid:23639207
- Szot P. Elevated cerebrospinal fluid norepinephrine in the elderly can link depression and a reduced glymphatic system as risk factors for Alzheimer’s Disease. J Aging Sci. 2016;4(2):158.
- Musiek ES, Xiong DD, Holtzman DM. Sleep, circadian rhythms, and the pathogenesis of Alzheimer’s disease. Exp Mol Med. 2015;47(3):e148. https://doi.org/10.1038/emm.2014.121 PMid:25766617
- Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol. 2018;17(11):1016-24. https://doi.org/10.1016/S1474-4422(18)30318-1 PMid:30353860
- Mendelsohn AR, Larrick JW. Sleep facilitates clearance of metabolites from the brain: Glymphatic function in aging and neurodegenerative diseases. Rejuvenation Res. 2013;16(6):518-23. https://doi.org/10.1089/rej.2013.1530 PMid:24199995
- Piantino J, Lim MM, Newgard CD, Iliff J. Linking traumatic brain injury, sleep disruption and post-traumatic headache: A potential role for glymphatic pathway dysfunction. Curr Pain Headache Rep. 2019;23(9):62. https://doi.org/10.1007/s11916-019-0799-4 PMid:31359173
- Gaberel T, Gakuba C, Goulay R, De Lizarrondo SM, Hanouz JL, Emery E, et al. Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: A new target for fibrinolysis? Stroke. 2014;45(10):3092-6. https://doi.org/10.1161/STROKEAHA.114.006617 PMid:25190438
- Back DB, Kwon KJ, Choi DH, Shin CY, Lee J, Han SH, et al. Chronic cerebral hypoperfusion induces post-stroke dementia following acute ischemic stroke in rats. J Neuroinflammation. 2017;14(1):216. https://doi.org/10.1186/s12974-017-0992-5 PMid:29121965
- Bobela W, Aebischer P, Schneider BL. Alpha-synuclein as a mediator in the interplay between aging and Parkinson’s disease. Biomolecules. 2015;5(4):2675-700. https://doi.org/10.3390/biom5042675 PMid:26501339
- Zou W, Pu T, Feng W, Lu M, Zheng Y, Du R, et al. Blocking meningeal lymphatic drainage aggravates Parkinson’s disease-like pathology in mice overexpressing mutated α-synuclein. Transl Neurodegener. 2019;8:7. https://doi.org/10.1186/s40035-019-0147-y PMid:30867902
- Sundaram S, Hughes RL, Peterson E, Müller-Oehring EM, Brontë-Stewart HM, Poston KL, et al. Establishing a framework for neuropathological correlates and glymphatic system functioning in Parkinson’s disease. Neurosci Biobehav Rev. 2019;103:305-15. https://doi.org/10.1016/j.neubiorev.2019.05.016 PMid:31132378
- Jiang Q, Zhang L, Ding G, Davoodi-Bojd E, Li Q, Li L, et al. Impairment of the glymphatic system after diabetes. J Cereb Blood Flow Metab. 2017;37(4):1326-37. https://doi.org/10.1177/0271678X16654702 PMid:27306755
- Hirotsu C, Tufik S, Andersen ML. Interactions between sleep, stress, and metabolism: From physiological to pathological conditions. Sleep Sci. 2015;8(3):143-52. https://doi.org/10.1016/j.slsci.2015.09.002 PMid:26779321
- Vasileva LV, Saracheva KE, Ivanovska MV, Petrova AP, Marchev AS, Georgiev MI, et al. Antidepressant-like effect of salidroside and curcumin on the immunoreactivity of rats subjected to a chronic mild stress model. Food Chem Toxicol. 2018;121:604-11. https://doi.org/10.1016/j.fct.2018.09.065 PMid:30268794
- Dhabhar FS. Enhancing versus suppressive effects of stress on immune function: Implications for immunoprotection and immunopathology. Neuroimmunomodulation. 2009;16(5):300-17. https://doi.org/10.1159/000216188 PMid:19571591
- Williams RB, Marchuk DA, Gadde KM, Barefoot JC, Grichnik K, Helms MJ, et al. Central nervous system serotonin function and cardiovascular responses to stress. Psychosom Med. 2001;63(2):300-5. https://doi.org/10.1097/00006842-200103000-00016 PMid:11292279
- Lavi E, Cong L. Type I astrocytes and microglia induce a cytokine response in an encephalitic murine coronavirus infection. Exp Mol Pathol. 2020;115:104474. https://doi.org/10.1016/j.yexmp.2020.104474 PMid:32454103
- Louveau A, Herz J, Alme MN, Salvador AF, Dong MQ, Viar KE, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci 2018;21(10):1380-91. https://doi.org/10.1038/s41593-018-0227-9 PMid:30224810
- Negi N, Das BK. CNS: Not an immunoprivilaged site anymore but a virtual secondary lymphoid organ. Int Rev Immunol. 2018;37(1): 57-68. https://doi.org/10.1080/08830185.2017.1357719 PMid:28961037
- Yanev P, Poinsatte K, Hominick D, Khurana N, Zuurbier KR, Berndt M, et al. Impaired meningeal lymphatic vessel development worsens stroke outcome. J Cereb Blood Flow Metab. 2020;40(2):263-75. https://doi.org/10.1177/0271678X18822921 PMid:30621519
- Chen J, He J, Ni R, Yang Q, Zhang Y, Luo L. Cerebrovascular injuries induce lymphatic invasion into brain parenchyma to guide vascular regeneration in zebrafish. Dev Cell. 2019;49(5): 697-710.e5. https://doi.org/10.1016/j.devcel.2019.03.022 PMid:31006646
- Benakis C, Llovera G, Liesz A. The meningeal and choroidal infiltration routes for leukocytes in stroke. Ther Adv Neurol Disord. 2018;11:1756286418783708. https://doi.org/10.1177/1756286418783708 PMid:29977343
- Rua R, McGavern DB. Advances in meningeal immunity. Trends Mol Med. 2018;24(6):542-59. https://doi.org/10.1016/j.molmed.2018.04.003 PMid:29731353
- Mander BA, Winer JR, Walker MP. Sleep and human aging. Neuron. 2017;94(1):19-36. https://doi.org/10.1016/j.neuron.2017.02.004 PMid:28384471
- Hablitz LM, Vinitsky HS, Sun Q, Stæger FF, Sigurdsson B, Mortensen KN, et al. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci Adv. 2019;5(2):eaav5447. https://doi.org/10.1126/sciadv.aav5447 PMid:30820460
- Tay TL, Savage JC, Hui CW, Bisht K, Tremblay M. Microglia across the lifespan: From origin to function in brain development, plasticity and cognition. J Physiol. 2017;595(6):1929-45. https://doi.org/10.1113/jp272134
- Clarke LE, Liddelow SA, Chakraborty C, Münch AE, Heiman M, Barres BA. Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci U S A. 2018;115:E1896-905. https://doi.org/10.1073/pnas.1800165115 PMid:29437957
- Cotrina ML, Nedergaard M. Astrocytes in the aging brain. J Neurosci Res. 2002;67(1):1-10. https://doi.org/10.1002/jnr.10121 PMid:11754075
- Finch CE. Neurons, glia, and plasticity in normal brain aging. Neurobiol Aging. 2003;24(Suppl 1):S123-7. https://doi.org/10.1016/s0197-4580(03)00051-4 PMid:12829120
- Campuzano O, Castillo-Ruiz MM, Acarin L, Castellano B, Gonzalez B. Increased levels of proinflammatory cytokines in the aged rat brain attenuate injury-induced cytokine response after excitotoxic damage. J Neurosci Res. 2009;87(11):2484-97. https://doi.org/10.1002/jnr.22074 PMid:19326443
- Thrane VR, Thrane AS, Plog BA, Thiyagarajan M, Iliff JJ, Deane R, et al. Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Sci Rep. 2013;3:2582. https://doi.org/10.1038/srep02582 PMid:24002448
- Profenno LA, Porsteinsson AP, Faraone SV. Meta-analysis of Alzheimer’s disease risk with obesity, diabetes, and related disorders. Biol Psychiatry. 2010;67(6):505-12. https://doi.org/10.1016/j.biopsych.2009.02.013 PMid:19358976
- Gaede P, Vedel P, Larsen N, Jensen GV, Parving HH, Pedersen O, et al. Multifactorial intervention and cardiovascular disease in patients with Type 2 diabetes. N Engl J Med. 2003;348(5):383-93. https://doi.org/10.1056/NEJMoa021778
- Seravalle G, Grassi G. Obesity and hypertension. Pharmacol Res. 2017;122:1-7. https://doi.org/10.1016/j.phrs.2017.05.013 PMid:28532816
- Wysocki M, Luo X, Schmeidler J, Dahlman K, Lesser GT, Grossman H, et al. Hypertension is associated with cognitive decline in elderly people at high risk for dementia. Am J Geriatr Psychiatry. 2012;20(2):179-87. https://doi.org/10.1097/JGP.0b013e31820ee833 PMid:21814158
- Kummer BR, Diaz I, Wu X, Aaroe AE, Chen ML, Iadecola C, et al. Associations between cerebrovascular risk factors and Parkinson disease. Ann Neurol. 2019;86(4):572-81. https://doi.org/10.1002/ana.25564 PMid:31464350
- de Heus RA, Rikkert MG, Tully PJ, Lawlor BA, Claassen JA, NILVAD Study Group. Blood pressure variability and progression of clinical Alzheimer disease. Hypertension. 2019;74(5):1172-80. https://doi.org/10.1161/HYPERTENSIONAHA.119.13664 PMid:31542965
- Mortensen KN, Sanggaard S, Mestre H, Lee H, Kostrikov S, Xavier AL, et al. Impaired glymphatic transport in spontaneously hypertensive rats. J Neurosci. 2019;39(32):6365-77. https://doi.org/10.1523/JNEUROSCI.1974-18.2019 PMid:31209176
- Blair GW, Thrippleton MJ, Shi Y, Hamilton I, Stringer M, Chappell F, et al. Intracranial hemodynamic relationships in patients with cerebral small vessel disease. Neurology. 2020;94(21):e2258-69. https://doi.org/10.1212/WNL.0000000000009483 PMid:32366534
- Geurts LJ, Zwanenburg JJ, Klijn CJ, Luijten PR, Biessels GJ. Higher pulsatility in cerebral perforating arteries in patients with small vessel disease related stroke, a 7T MRI Study. Stroke. 2019;50:62-8.
- Lorente-Cebrián S, Costa AG, Navas-Carretero S, Zabala M, Martínez JA, Moreno-Aliaga MJ. Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: A review of the evidence. J Physiol Biochem. 2013;69(3): 633-51. https://doi.org/10.1007/s13105-013-0265-4 PMid:23794360
- Bazinet RP, Layé S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci. 2014;15(12):771-85. https://doi.org/10.1038/nrn3820 PMid:25387473
- Ren H, Luo C, Feng Y, Yao X, Shi Z, Liang F, et al. Omega-3 polyunsaturated fatty acids promote amyloid-b clearance from the brain through mediating the function of the glymphatic system. FASEB J. 2017;31(1):282-93. https://doi.org/10.1096/fj.201600896 PMid:27789520
- Zhang E, Wan X, Yang L, Wang D, Chen Z, Chen Y, et al. Omega-3 polyunsaturated fatty acids alleviate traumatic brain injury by regulating the glymphatic pathway in mice. Front Neurol. 2020;11:707. https://doi.org/10.3389/fneur.2020.00707 PMid:32765412
- Chan JK, Trinder J, Colrain IM, Nicholas CL. The acute effects of alcohol on sleep electroencephalogram power spectra in late adolescence. Alcohol Clin Exp Res. 2015;39(2):291-9. https://doi.org/10.1111/acer.12621 PMid:25597245