References
- Aryee A, Edgeworth JD. Carriage, clinical microbiology and transmission of Staphylococcus aureus. Curr Top Microbiol Immunol. 2017;409:1-19. https://doi.org/10.1007/82_2016_5 PMid:27097812
- van Belkum A, Verkaik NJ, de Vogel CP, Boelens HA, Verveer J, Nouwen JL, et al. Reclassification of Staphylococcus aureus nasal carriage types. J Infect Dis. 2009;199(12):1820-6. https://doi.org/10.1086/599119 PMid:19419332
- Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis. 2005;5(12):751-62. https://doi.org/10.1016/S1473-3099(05)70295-4 PMid:16310147
- Licitra G. Etymologia: Staphylococcus. Emerg Infect Dis. 2013;19:1553. https://doi.org/10.3201/eid1909.ET1909
- Fitzgerald JR. Evolution of Staphylococcus aureus during human colonization and infection. Infect Genet Evol. 2014;21:542-7. https://doi.org/10.1016/j.meegid.2013.04.020 PMid:23624187
- Monaco M, Pimentel de Araujo F, Cruciani M, Coccia EM, Pantosti A. Worldwide epidemiology and antibiotic resistance of Staphylococcus aureus. Curr Top Microbiol Immunol. 2017;409:21-56. https://doi.org/10.1007/82_2016_3 PMid:27025380
- Frank AL, Marcinak JF, Mangat PD, Schreckenberger PC. Community-acquired and clindamycin-susceptible methicillin-resistant Staphylococcus aureus in children. Pediatr Infect Dis J. 1999;18(11):993-1000. https://doi.org/10.1097/00006454-199911000-00012 PMid:10571437
- Herold BC, Immergluck LC, Maranan MC, Lauderdale DS, Gaskin RE, Boyle-Vavra S, et al. Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk. JAMA. 1998;279(8):593-598. https://doi.org/10.1001/jama.279.8.593 PMid:9486753
- Groom AV, Wolsey DH, Naimi TS, Smith K, Johnson S, Boxrud D, et al. Community-acquired methicillin-resistant Staphylococcus aureus in a rural American Indian community. JAMA. 2001;286(10):1201-5. https://doi.org/10.1001/jama.286.10.1201 PMid:11559265
- Pallin DJ, Egan DJ, Pelletier AJ, Espinola JA, Hooper DC, Camargo CA Jr. Increased US emergency department visits for skin and soft tissue infections, and changes in antibiotic choices, during the emergence of community-associated methicillin-resistant Staphylococcus aureus. Ann Emerg Med. 2008;51(3):291-8. https://doi.org/10.1016/j.annemergmed.2007.12.004 PMid:18222564
- From the centers for disease control and prevention. Four pediatric deaths from community-acquired methicillin-resistant Staphylococcus aureus --Minnesota and North Dakota, 1997-1999. JAMA. 1999;282(12):1123-5. PMid:21033181
- King MD, Humphrey BJ, Wang YF, Kourbatova EV, Ray SM, Blumberg HM. Emergence of community-acquired methicillin-resistant Staphylococcus aureus USA 300 clone as the predominant cause of skin and soft-tissue infections. Ann Intern Med. 2006;144(5):309-17. https://doi.org/10.7326/0003-4819-144-5-200603070-00005 PMid:16520471
- Hayward A, Knott F, Petersen I, Livermore DM, Duckworth G, Islam A, et al. Increasing hospitalizations and general practice prescriptions for community-onset staphylococcal disease, England. Emerg Infect Dis. 2008;14(5):720-6. https://doi.org/10.3201/eid1405.070153 PMid:18439352
- Vaska VL, Nimmo GR, Jones M, Grimwood K, Paterson DL. Increases in Australian cutaneous abscess hospitalisations: 1999-2008. Eur J Clin Microbiol Infect Dis. 2012;31(1):93-6. https://doi.org/10.1007/s10096-011-1281-3 PMid:21553298
- Schaumburg F, Alabi AS, Peters G, Becker K. New epidemiology of Staphylococcus aureus infection in Africa. Clin Microbiol Infect. 2014;20(7):589-96. https://doi.org/10.1111/1469-0691.12690 PMid:24861767
- Jurke A, Daniels-Haardt I, Silvis W, Berends MS, Glasner C, Becker K, et al. Changing epidemiology of meticillin-resistant Staphylococcus aureus in 42 hospitals in the Dutch-German border region, 2012 to 2016: Results of the search-and-follow-policy. Euro Surveill. 2019;24(15):1800244. https://doi.org/10.2807/1560-7917.ES.2019.24.15.1800244 PMid:30994105
- Huh K, Chung DR. Changing epidemiology of community-associated methicillin-resistant Staphylococcus aureus in the Asia-Pacific region. Expert Rev Anti Infect Ther. 2016;14(11):1007-22. https://doi.org/10.1080/14787210.2016.1236684 PMid:27645549
- Klein EY, Jiang W, Mojica N, Tseng KK, McNeill R, Cosgrove SE, et al. National costs associated with methicillin-susceptible and methicillin-resistant Staphylococcus aureus hospitalizations in the United States, 2010-2014. Clin Infect Dis. 2019;68(1):22-8. https://doi.org/10.1093/cid/ciy399 PMid:29762662
- Fauci AS. The global challenge of infectious diseases: The evolving role of the National Institutes of Health in basic and clinical research. Nat Immunol. 2005;6(8):743-7. https://doi.org/10.1038/ni0805-743 PMid:16034426
- Stevens DL, Bisno AL, Chambers HF, Everett ED, Dellinger P, Goldstein EJ, et al. Practice guidelines for the diagnosis and management of skin and soft-tissue infections. Clin Infect Dis. 2005;41(10):1373-406. https://doi.org/10.1086/497143 PMid:16231249
- Stevens DL, Bisno AL, Chambers HF, Dellinger EP, Goldstein EJ, Gorbach SL, et al. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin Infect Dis. 2014;59(2):e10-52. https://doi.org/10.1093/cid/ciu444 PMid:24973422
- Wang F, Zhou H, Olademehin OP, Kim SJ, Tao P. Insights into key interactions between vancomycin and bacterial cell wall structures. ACS Omega. 2018;3(1):37-45. https://doi.org/10.1021/acsomega.7b01483 PMid:29399648
- Tang J, Hu J, Kang L, Deng Z, Wu J, Pan J. The use of vancomycin 28 https://oamjms.eu/index.php/mjms/index in the treatment of adult patients with methicillin-resistant Staphylococcus aureus (MRSA) infection: A survey in a tertiary hospital in China. Int J Clin Exp Med. 2015;8(10):19436-41.
- Chien JW, Kucia ML, Salata RA. Use of linezolid, an oxazolidinone, in the treatment of multidrug-resistant gram-positive bacterial infections. Clin Infect Dis. 2000;30(1):146-51. https://doi.org/10.1086/313597 PMid:10619743
- Hashemian SM, Farhadi T, Ganjparvar M. Linezolid: A review of its properties, function, and use in critical care. Drug Des Devel Ther. 2018;12:1759-67. https://doi.org/10.2147/DDDT.S164515 PMid:29950810
- Yue J, Dong BR, Yang M, Chen X, Wu T, Liu GJ. Linezolid versus vancomycin for skin and soft tissue infections. Cochrane Database Syst Rev. 2016;2016:CD008056. https://doi.org/10.1002/14651858.CD008056.pub3 PMid:26758498
- Li Y, Xu W. Efficacy and safety of linezolid compared with other treatments for skin and soft tissue infections: A meta-analysis. Biosci Rep. 2018;38(1):BSR20171125. https://doi.org/10.1042/BSR20171125 PMid:29229674
- Watkins RR, Lemonovich TL, File TM Jr. An evidence-based review of linezolid for the treatment of methicillin-resistant Staphylococcus aureus (MRSA): Place in therapy. Core Evid. 2012;7:131-43. https://doi.org/10.2147/CE.S33430 PMid:23271985
- Spížek J, Řezanka T. Lincosamides: Chemical structure, biosynthesis, mechanism of action, resistance, and applications. Biochem Pharmacol. 2017;133:20-8. https://doi.org/10.1016/j.bcp.2016.12.001 PMid:27940264
- Frei CR, Miller ML, Lewis JS 2nd, Lawson KA, Hunter JM, Oramasionwu CU, et al. Trimethoprim-sulfamethoxazole or clindamycin for community-associated MRSA (CA-MRSA) skin infections. J Am Board Fam Med. 2010;23(6):714-9. https://doi.org/10.3122/jabfm.2010.06.090270 PMid:21057066
- Sakoulas G, Moise-Broder PA, Schentag J, Forrest A, Moellering RC Jr., Eliopoulos GM. Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. J Clin Microbiol. 2004;42(6):2398-402. https://doi.org/10.1128/JCM.42.6.2398-2402.2004 PMid:15184410
- Shahmiri M, Enciso M, Adda CG, Smith BJ, Perugini MA, Mechler A. Membrane core-specific antimicrobial action of cathelicidin LL-37 peptide switches between pore and nanofibre formation. Sci Rep. 2016;6:38184. https://doi.org/10.1038/srep38184 PMid:27901075
- Miller WR, Bayer AS, Arias CA. Mechanism of action and resistance to daptomycin in Staphylococcus aureus and Enterococci. Cold Spring Harb Perspect Med. 2016;6(11):a026997. https://doi.org/10.1101/cshperspect.a026997 PMid:27580748
- Taylor SD, Palmer M. The action mechanism of daptomycin. Bioorg Med Chem. 2016;24(24):6253-68. https://doi.org/10.1016/j.bmc.2016.05.052 PMid:27288182
- Martone WJ, Lamp KC. Efficacy of daptomycin in complicated skin and skin-structure infections due to methicillin-sensitive and -resistant Staphylococcus aureus: Results from the CORE Registry. Curr Med Res Opin. 2006;22(12):2337-43. https://doi.org/10.1185/030079906X148427 PMid:17257448
- Bradley J, Glasser C, Patino H, Arnold SR, Arrieta A, Congeni B, et al. Daptomycin for complicated skin infections: A randomized trial. Pediatrics. 2017;139(3):e20162477. https://doi.org/10.1542/peds.2016-2477 PMid:28202770
- Davis SL, McKinnon PS, Hall LM, Delgado G Jr., Rose W, Wilson RF, et al. Daptomycin versus vancomycin for complicated skin and skin structure infections: Clinical and economic outcomes. Pharmacotherapy. 2007;27:1611-8. https://doi.org/10.1592/phco.27.12.1611 PMid:18041881
- Shoemaker DM, Simou J, Roland WE. A review of daptomycin for injection (Cubicin) in the treatment of complicated skin and skin structure infections. Ther Clin Risk Manag. 2006;2(2):169-74. https://doi.org/10.2147/tcrm.2006.2.2.169 PMid:18360590
- Bland CM, Bookstaver PB, Lu ZK, Dunn BL, Rumley KF, Southeastern Research Group E. Musculoskeletal safety outcomes of patients receiving daptomycin with HMGCoA reductase inhibitors. Antimicrob Agents Chemother. 2014;58(10):5726-31. https://doi.org/10.1128/AAC.02910-14 PMid:25022580
- van Bambeke F, Mingeot-Leclercq MP, Glupczynski Y, Tulkens PM. 137 - Mechanisms of action. In: Cohen J, Powderly WG, Opal SM, editors. Infectious Diseases. 4th ed. Netherlands: Elsevier; 2017. p. 1162-80.e1.
- Shirley DA, Heil EL, Johnson JK. Ceftaroline fosamil: A brief clinical review. Infect Dis Ther. 2013;2(2):95-110. https://doi.org/10.1007/s40121-013-0010-x PMid:25134474
- Abbott IJ, Jenney AW, Jeremiah CJ, Mirčeta M, Kandiah JP, Holt DC, et al. Reduced in vitro activity of ceftaroline by etest among clonal complex 239 methicillin-resistant Staphylococcus aureus clinical strains from Australia. Antimicrob Agents Chemother. 2015;59(12):7837-41. https://doi.org/10.1128/AAC.02015-15 PMid:26392488
- Wilcox MH, Corey GR, Talbot GH, Thye D, Friedland D, Baculik T, et al. CANVAS 2: The second Phase III, randomized, double-blind study evaluating ceftaroline fosamil for the treatment of patients with complicated skin and skin structure infections. J Antimicrob Chemother. 2010;65 Suppl 4:v53-65. https://doi.org/10.1093/jac/dkq255 PMid:21115455
- Dryden M, Zhang Y, Wilson D, Iaconis JP, Gonzalez J. A Phase III, randomized, controlled, non-inferiority trial of ceftaroline fosamil 600 mg every 8 h versus vancomycin plus aztreonam in patients with complicated skin and soft tissue infection with systemic inflammatory response or underlying comorbidities. J Antimicrob Chemother. 2016;71(12):3575-84. https://doi.org/10.1093/jac/dkw333 PMid:27585969
- Cosimi RA, Beik N, Kubiak DW, Johnson JA. Ceftaroline for severe methicillin-resistant Staphylococcus aureus infections: A systematic review. Open Forum Infect Dis. 2017;4(2):ofx084. https://doi.org/10.1093/ofid/ofx084 PMid:28702467
- Kamath RS, Sudhakar D, Gardner JG, Hemmige V, Safar H, Musher DM. Guidelines vs actual management of skin and soft tissue infections in the emergency department. Open Forum Infect Dis. 2018;5(1):ofx188. https://doi.org/10.1093/ofid/ofx188 PMid:29354655
- Lindsay JA. Genomic variation and evolution of Staphylococcus aureus. Int J Med Microbiol. 2010;300(2-3):98-103. https://doi.org/10.1016/j.ijmm.2009.08.013 PMid:19811948
- Olsen JE, Christensen H, Aarestrup FM. Diversity and evolution of blaZ from Staphylococcus aureus and coagulase-negative staphylococci. J Antimicrob Chemother. 2006;57(3):450-60. https://doi.org/10.1093/jac/dki492 PMid:16449305
- Ploy MC, Grélaud C, Martin C, de Lumley L, Denis F. First clinical isolate of vancomycin-intermediate Staphylococcus aureus in a French hospital. Lancet. 1998;351(9110):1212. https://doi.org/10.1016/s0140-6736(05)79166-2 PMid:9643727
- Centers for Disease Control and Prevention (CDC). Staphylococcus aureus resistant to vancomycin--United States, 2002. MMWR Morb Mortal Wkly Rep. 2002;51(26):565-7.
- Howden BP, Davies JK, Johnson PD, Stinear TP, Grayson ML. Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: Resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev. 2010;23(1):99-139. https://doi.org/10.1128/CMR.00042-09 PMid:20065327
- McGuinness WA, Malachowa N, DeLeo FR. Vancomycin resistance in Staphylococcus aureus. Yale J Biol Med. 2017;90(2):269-81.
- Gardete S, Tomasz A. Mechanisms of vancomycin resistance in Staphylococcus aureus. J Clin Invest. 2014;124(7):2836-40. https://doi.org/10.1172/JCI68834 PMid:24983424
- Ślusarczyk R, Bielejewska A, Bociek A, Bociek M. Resistance to ceftaroline-2018 review. Eur J Biol Res. 2018;8:112-20.
- Kelley WL, Jousselin A, Barras C, Lelong E, Renzoni A. Missense mutations in PBP2A affecting ceftaroline susceptibility detected in epidemic hospital-acquired methicillin-resistant Staphylococcus aureus clonotypes ST228 and ST247 in Western Switzerland archived since 1998. Antimicrob Agents Chemother. 2015;59(4):1922-30. https://doi.org/10.1128/AAC.04068-14 PMid:25583724
- Lahiri SD, Alm RA. Identification of non-PBP2a resistance mechanisms in Staphylococcus aureus after serial passage with ceftaroline: Involvement of other PBPs. J Antimicrob Chemother. 2016;71(11):3050-7. http://doi.org/10.1093/jac/dkw282 PMid:27494915
- Greninger AL, Chatterjee SS, Chan LC, Hamilton SM, Chambers HF, Chiu CY. Whole-genome sequencing of methicillin-resistant Staphylococcus aureus resistant to fifth-generation cephalosporins reveals potential non-mecA mechanisms of resistance. PLoS One. 2016;11(2):e0149541. https://doi.org/10.1371/journal.pone.0149541 PMid:26890675
- Rajan V, Kumar VG, Gopal S. A cfr-positive clinical staphylococcal isolate from India with multiple mechanisms of linezolid-resistance. Indian J Med Res. 2014;139(3):463-7.
- Mittal G, Bhandari V, Gaind R, Rani V, Chopra S, Dawar R, et al. Linezolid resistant coagulase negative staphylococci (LRCoNS) with novel mutations causing blood stream infections (BSI) in India. BMC Infect Dis. 2019;19(1):717. https://doi.org/10.1186/s12879-019-4368-6 PMid:31412801
- Miller K, Dunsmore CJ, Fishwick CW, Chopra I. Linezolid and tiamulin cross-resistance in Staphylococcus aureus mediated by point mutations in the peptidyl transferase center. Antimicrob Agents Chemother. 2008;52(5):1737-42. https://doi.org/10.1128/AAC.01015-07 PMid:18180348
- Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13(1):42-51. https://doi.org/10.1038/nrmicro3380 PMid:25435309
- Adhikari RP, Shrestha S, Barakoti A, Amatya R. Inducible clindamycin and methicillin resistant Staphylococcus aureus in a tertiary care hospital, Kathmandu, Nepal. BMC Infect Dis. 2017;17(1):483. https://doi.org/10.1186/s12879-017-2584-5 PMid:28693489
- Ernst CM, Slavetinsky CJ, Kuhn S, Hauser JN, Nega M, Mishra NN, et al. Gain-of-function mutations in the phospholipid flippase MprF confer specific daptomycin resistance. MBio. 2018;9(6):e01659-18. https://doi.org/10.1128/mBio.01659-18 PMid:30563904
- Reichmann NT, Cassona CP, Gründling A. Revised mechanism of D-alanine incorporation into cell wall polymers in Gram-positive bacteria. Microbiology (Reading). 2013;159(Pt 9):1868-77. https://doi.org/10.1099/mic.0.069898-0 PMid:23858088
- Krishna S, Miller LS. Innate and adaptive immune responses against Staphylococcus aureus skin infections. Semin Immunopathol. 2012;34(2):261-80. https://doi.org/10.1007/s00281-011-0292-6 PMid:22057887
- Kobayashi SD, Malachowa N, DeLeo FR. Pathogenesis of Staphylococcus aureus abscesses. Am J Pathol. 2015;185(6):1518-27. https://doi.org/10.1016/j.ajpath.2014.11.030 PMid:25749135
- Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13(3):159-75. https://doi.org/10.1038/nri3399 PMid:23435331
- Miller LS, Cho JS. Immunity against Staphylococcus aureus cutaneous infections. Nat Rev Immunol. 2011;11(8):505-18. https://doi.org/10.1038/nri3010 PMid:21720387
- Panton P, Valentine F. Staphylococcal toxin. Lancet. 1932;219(5662):506-8.
- Costello ME, Huygens F. Diversity of community acquired MRSA carrying the PVL gene in Queensland and New South Wales, Australia. Eur J Clin Microbiol Infect Dis. 2011;30(10):1163-7. https://doi.org/10.1007/s10096-011-1203-4 PMid:21424382
- Harch SA, MacMorran E, Tong SY, Holt DC, Wilson J, Athan E, et al. High burden of complicated skin and soft tissue infections in the Indigenous population of Central Australia due to dominant Panton Valentine leucocidin clones ST93-MRSA and CC121-MSSA. BMC Infect Dis. 2017;17(1):405. https://doi.org/10.1186/s12879-017-2460-3 PMid:28592231
- Hu Q, Cheng H, Yuan W, Zeng F, Shang W, Tang D, et al. Panton-Valentine leukocidin (PVL)-positive health care-associated methicillin-resistant Staphylococcus aureus isolates are associated with skin and soft tissue infections and colonized mainly by infective PVL-encoding bacteriophages. J Clin Microbiol. 2015;53(1):67-72. https://doi.org/10.1128/JCM.01722-14 PMid:25339405
- Immergluck LC, Jain S, Ray SM, Mayberry R, Satola S, Parker TC, et al. Risk of skin and soft tissue infections among children found to be Staphylococcus aureus MRSA USA300 carriers. West J Emerg Med. 2017;18(2):201-212. https://doi.org/10.5811/westjem.2016.10.30483 PMid:28210352
- Ma J, Gulbins E, Edwards MJ, Caldwell CC, Fraunholz M, Becker KA. Staphylococcus aureus α-toxin induces inflammatory cytokines via lysosomal acid sphingomyelinase and ceramides. Cell Physiol Biochem. 2017;43(6):2170-84. https://doi.org/10.1159/000484296 PMid:29069651
- Montgomery CP, Boyle-Vavra S, Daum RS. Importance of the global regulators Agr and SaeRS in the pathogenesis of CA-MRSA USA300 infection. PLoS One. 2010;5(12):e15177. https://doi.org/10.1371/journal.pone.0015177 PMid:21151999
- Weiss EC, Zielinska A, Beenken KE, Spencer HJ, Daily SJ, Smeltzer MS. Impact of sarA on daptomycin susceptibility of Staphylococcus aureus biofilms in vivo. Antimicrob Agents Chemother. 2009;53(10):4096-102. https://doi.org/10.1128/AAC.00484-09 PMid:19651914
- Chen Y, Yeh AJ, Cheung GY, Villaruz AE, Tan VY, Joo HS, et al. Basis of virulence in a Panton-Valentine leukocidin-negative community-associated methicillin-resistant Staphylococcus aureus strain. J Infect Dis. 2015;211(3):472-80. https://doi.org/10.1093/infdis/jiu462 PMid:25139021
- Hilliard JJ, Datta V, Tkaczyk C, Hamilton M, Sadowska A, Jones-Nelson O, et al. Anti-alpha-toxin monoclonal antibody and antibiotic combination therapy improves disease outcome and accelerates healing in a Staphylococcus aureus dermonecrosis model. Antimicrob Agents Chemother. 2015;59:299-309. https://doi.org/10.1128/AAC.03918-14 PMid:25348518
- Le VT, Tkaczyk C, Chau S, Rao RL, Dip EC, Pereira-Franchi EP, et al. Critical role of alpha-toxin and protective effects of its neutralization by a human antibody in acute bacterial skin and skin structure infections. Antimicrob Agents Chemother. 2016;60(10):5640-8. https://doi.org/10.1128/AAC.00710-16 PMid:27401576
- Surewaard BG, de Haas CJ, Vervoort F, Rigby KM, DeLeo FR, Otto M, et al. Staphylococcal alpha-phenol soluble modulins contribute to neutrophil lysis after phagocytosis. Cell Microbiol. 2013;15(8):1427-37. https://doi.org/10.1111/cmi.12130 PMid:23470014
- Berlon NR, Qi R, Sharma-Kuinkel BK, Joo HS, Park LP, George D, et al. Clinical MRSA isolates from skin and soft tissue infections show increased in vitro production of phenol soluble modulins. J Infect. 2015;71:447-57. https://doi.org/10.1016/j.jinf.2015.06.005 PMid:26079275
- Richardson JR, Armbruster NS, Günter M, Biljecki M, Klenk J, Heumos S, et al. PSM peptides from community-associated methicillin-resistant Staphylococcus aureus impair the adaptive immune response via modulation of dendritic cell subsets in vivo. Front Immunol. 2019;10:995-5. https://doi.org/10.3389/fimmu.2019.00995 PMid:31134074
- Wang R, Braughton KR, Kretschmer D, Bach TH, Queck SY, Li M, et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med. 2007;13(12):1510-4. https://doi.org/10.1038/nm1656 PMid:17994102
- Queck SY, Khan BA, Wang R, Bach TH, Kretschmer D, Chen L, et al. Mobile genetic element-encoded cytolysin connects virulence to methicillin resistance in MRSA. PLoS Pathog. 2009;5:e1000533. https://doi.org/10.1371/journal.ppat.1000533
- Nakaminami H, Ito T, Han X, Ito A, Matsuo M, Uehara Y, et al. First report of sasX-positive methicillin-resistant Staphylococcus aureus in Japan. FEMS Microbiol Lett. 2017;364(16):fnx171. https://doi.org/10.1093/femsle/fnx171 PMid:28873947
- Viela F, Prystopiuk V, Leprince A, Mahillon J, Speziale P, Pietrocola G, et al. Binding of Staphylococcus aureus protein A to von willebrand factor is regulated by mechanical force. mBio. 2019;10(2):e00555-19. https://doi.org/10.1128/mBio.00555-19 PMid:31040240
- Malachowa N, Kobayashi SD, Porter AR, Braughton KR, Scott DP, Gardner DJ, et al. Contribution of Staphylococcus aureus coagulases and clumping factor A to abscess formation in a rabbit model of skin and soft tissue infection. PLoS One. 2016;11(6):e0158293. https://doi.org/10.1371/journal.pone.0158293 PMid:27336691
- Lacey KA, Mulcahy ME, Towell AM, Geoghegan JA, McLoughlin RM. Clumping factor B is an important virulence factor during Staphylococcus aureus skin infection and a promising vaccine target. PLoS Pathog. 2019;15(4):e1007713. https://doi.org/10.1371/journal.ppat.1007713 PMid:31009507
- Kwiecinski J, Jin T, Josefsson E. Surface proteins of Staphylococcus aureus play an important role in experimental skin infection. APMIS. 2014;122(12):1240-50. https://doi.org/10.1111/apm.12295 PMid:25051890
- Edwards AM, Potter U, Meenan NA, Potts JR, Massey RC. Staphylococcus aureus keratinocyte invasion is dependent upon multiple high-affinity fibronectin-binding repeats within FnBPA. PLoS One. 2011;6(4):e18899. https://doi.org/10.1371/journal.pone.0018899 PMid:21526122
- Le KY, Otto M. Quorum-sensing regulation in staphylococci-an overview. Front Microbiol. 2015;6:1174. https://doi.org/10.3389/fmicb.2015.01174 PMid:26579084
- Sully EK, Malachowa N, Elmore BO, Alexander SM, Femling JK, Gray BM, et al. Selective chemical inhibition of agr quorum sensing in Staphylococcus aureus promotes host defense with minimal impact on resistance. PLoS Pathog. 2014;10(6):e1004174. https://doi.org/10.1371/journal.ppat.1004174 PMid:24945495
- Cheung GY, Wang R, Khan BA, Sturdevant DE, Otto M. Role of the accessory gene regulator agr in community-associated methicillin-resistant Staphylococcus aureus pathogenesis. Infect Immun. 2011;79(5):1927-35. https://doi.org/10.1128/IAI.00046-11 PMid:21402769
- Mohammed YHE, Manukumar HM, Rakesh KP, Karthik CS, Mallu P, Qin HL. Vision for medicine: Staphylococcus aureus biofilm war and unlocking key’s for anti-biofilm drug development. Microb Pathog. 2018;123:339-47. https://doi.org/10.1016/j.micpath.2018.07.002 PMid:30057355
- Craft KM, Nguyen JM, Berg LJ, Townsend SD. Methicillin-resistant Staphylococcus aureus (MRSA): Antibiotic-resistance and the biofilm phenotype. Medchemcomm. 2019;10(8):1231-41. https://doi.org/10.1039/c9md00044e PMid:31534648
- Singhai M, Malik A, Shahid M, Malik MA, Goyal R. A study on device-related infections with special reference to biofilm production and antibiotic resistance. J Glob Infect Dis. 2012;4(4):193-198. https://doi.org/10.4103/0974-777X.103896 PMid:23326076
- Khatoon Z, McTiernan CD, Suuronen EJ, Mah TF, Alarcon EI. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon. 2018;4(12):e01067. https://doi.org/10.1016/j.heliyon.2018.e01067 PMid:30619958
- Lebeaux D, Ghigo JM, Beloin C. Biofilm-related infections: Bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev. 2014;78(3):510-43. https://doi.org/10.1128/MMBR.00013-14 PMid:25184564
- Mirani ZA, Aziz M, Khan SI. Small colony variants have a major role in stability and persistence of Staphylococcus aureus biofilms. J Antibiot (Tokyo). 2015;68(2):98-105. https://doi.org/10.1038/ja.2014.115 PMid:25160508
- Kim W, Hendricks GL, Tori K, Fuchs BB, Mylonakis E. Strategies against methicillin-resistant Staphylococcus aureus persisters. Future Med Chem. 2018;10(7):779-94. https://doi.org/10.4155/fmc-2017-0199 PMid:29569952
- Alav I, Sutton JM, Rahman KM. Role of bacterial efflux pumps in biofilm formation. J Antimicrob Chemother. 2018;73(8):2003-20. https://doi.org/10.1093/jac/dky042 PMid:29506149
- Barsoumian AE, Mende K, Sanchez CJ Jr., Beckius ML, Wenke JC, Murray CK, et al. Clinical infectious outcomes associated with biofilm-related bacterial infections: A retrospective chart review. BMC Infect Dis. 2015;15:223. https://doi.org/10.1186/s12879-015-0972-2 PMid:26049931
- Romanò CL, Trentinaglia MT, De Vecchi E, Logoluso N, George DA, Morelli I, et al. Cost-benefit analysis of antibiofilm microbiological techniques for peri-prosthetic joint infection diagnosis. BMC Infect Dis. 2018;18(1):154. https://doi.org/10.1186/s12879-018-3050-8 PMid:29609540
- Edmiston CE, McBain AJ, Kiernan M, Leaper DJ. A narrative review of microbial biofilm in postoperative surgical site infections: Clinical presentation and treatment. J Wound Care. 2016;25(12):693-702. https://doi.org/10.12968/jowc.2016.25.12.693 PMID: 27974013
- Kwiecinski J, Kahlmeter G, Jin T. Biofilm formation by Staphylococcus aureus isolates from skin and soft tissue infections. Curr Microbiol. 2015;70(5):698-703. https://doi.org/10.1007/s00284-014-0770-x PMid:25586078
- Akiyama H, Ueda M, Kanzaki H, Tada J, Arata J. Biofilm formation of Staphylococcus aureus strains isolated from impetigo and furuncle: Role of fibrinogen and fibrin. J Dermatol Sci. 1997;16(1):2-10. https://doi.org/10.1016/s0923-1811(97)00611-7 PMid:9438901
- Shin K, Yun Y, Yi S, Lee HG, Cho JC, Suh KD, et al. Biofilm-forming ability of Staphylococcus aureus strains isolated from human skin. J Dermatol Sci. 2013;71(2):130-7. https://doi.org/10.1016/j.jdermsci.2013.04.004 PMid:23664186
- Kwiecinski JM, Jacobsson G, Horswill AR, Josefsson E, Jin T. Biofilm formation by Staphylococcus aureus clinical isolates correlates with the infection type. Infect Dis (Lond). 2019;51(6):446-51. https://doi.org/10.1080/23744235.2019.1593499 PMid:30985241
- Esposito S, Bassetti M, Borre S, Bouza E, Dryden M, Fantoni M, et al. Diagnosis and management of skin and soft-tissue infections (SSTI): A literature review and consensus statement on behalf of the Italian Society of Infectious Diseases and International Society of Chemotherapy. J Chemother. 2011;23(5):251-262. https://doi.org/10.1179/joc.2011.23.5.251 PMid:22005055
- Kobayashi T, Naik S, Nagao K. Choreographing immunity in the skin epithelial barrier. Immunity. 2019;50(3):552-65. https://doi.org/10.1016/j.immuni.2019.02.023 PMid:30893586
- Matejuk A. Skin immunity. Arch Immunol Ther Exp (Warsz). 2018;66(1):45-54. https://doi.org/10.1007/s00005-017-0477-3 PMid:28623375
- Ibrahim F, Khan T, Pujalte GG. Bacterial skin infections. Prim Care. 2015;42(4):485-99. https://doi.org/10.1016/j.pop.2015.08.001 PMid:26612370
- Sun L, Liu W, Zhang LJ. The role of toll-like receptors in skin host defense, psoriasis, and atopic dermatitis. J Immunol Res. 2019;2019:1824624. https://doi.org/10.1155/2019/1824624 PMid:31815151
- Bitschar K, Wolz C, Krismer B, Peschel A, Schittek B. Keratinocytes as sensors and central players in the immune defense against Staphylococcus aureus in the skin. J Dermatol Sci. 2017;87(3):215-20. https://doi.org/10.1016/j.jdermsci.2017.06.003 PMid:28655473
- Pasparakis M, Haase I, Nestle FO. Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol. 2014;14(5):289-301. https://doi.org/10.1038/nri3646 PMid:24722477
- Brandt SL, Putnam NE, Cassat JE, Serezani CH. Innate immunity to Staphylococcus aureus: Evolving paradigms in soft tissue and invasive infections. J Immunol. 2018;200(12):3871-80. https://doi.org/10.4049/jimmunol.1701574 PMid:29866769
- Kashem SW, Haniffa M, Kaplan DH. Antigen-presenting cells in the skin. Annu Rev Immunol. 2017;35:469-99. https://doi.org/10.1146/annurev-immunol-051116-052215 PMid:28226228
- Buvelot H, Posfay-Barbe KM, Linder P, Schrenzel J, Krause KH. Staphylococcus aureus, phagocyte NADPH oxidase and chronic granulomatous disease. FEMS Microbiol Rev. 2017;41(2):139-57. https://doi.org/10.1093/femsre/fuw042 PMid:27965320
- Beavers WN, Skaar EP. Neutrophil-generated oxidative stress and protein damage in Staphylococcus aureus. Pathog Dis. 2016;74(6):ftw060. https://doi.org/10.1093/femspd/ftw060 PMid:27354296
- Battistelli M, Malatesta M, Meschini S. Oxidative stress to promote cell death or survival. Oxid Med Cell Longev. 2016;2016:2054650. https://doi:10.1155/2016/2054650 PMid:26941887
- Chakraborty SP, Roy S. In vitro Staphylococcus aureus -induced oxidative stress in mice murine peritoneal macrophages: A duration-dependent approach. Asian Pac J Trop Biomed. 2014;4(Suppl 1):S298-304. https://doi.org/10.12980/APJTB.4.2014B341 PMid:25183101
- Affonso RC, Voytena AP, Fanan S, Pitz H, Coelho DS, Horstmann AL, et al. Phytochemical composition, antioxidant activity, and the effect of the aqueous extract of coffee (Coffea arabica L.) bean residual press cake on the skin wound healing. Oxid Med Cell Longev. 2016;2016:1923754. https://doi.org/10.1155/2016/1923754 PMid:27965732
- Li C, Li H, Jiang Z, Zhang T, Wang Y, Li Z, et al. Interleukin-33 increases antibacterial defense by activation of inducible nitric oxide synthase in skin. PLoS Pathog. 2014;10(2):e1003918. https://doi.org/10.1371/journal.ppat.1003918 PMid:24586149
- Grosser MR, Weiss A, Shaw LN, Richardson AR. Regulatory requirements for Staphylococcus aureus nitric oxide resistance. J Bacteriol. 2016;198(15):2043-55. https://doi.org/10.1128/JB.00229-16 PMid:27185828
- Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Skin wound healing: An update on the current knowledge and concepts. Eur Surg Res. 2017;58(1-2):81-94. https://doi.org/10.1159/000454919 PMid:27974711
- George L, Bavya MC, Rohan KV, Srivastava R. A therapeutic polyelectrolyte-vitamin C nanoparticulate system in polyvinyl alcohol-alginate hydrogel: An approach to treat skin and soft tissue infections caused by Staphylococcus aureus. Colloids Surf B Biointerfaces. 2017;160:315-24. https://doi.org/10.1016/j.colsurfb.2017.09.030 PMid:28950196
- Su X, Liu X, Wang S, Li B, Pan T, Liu D, et al. Wound-healing promoting effect of total tannins from Entada phaseoloides (L.) Merr. in rats. Burns. 2017;43(4):830-8. https://doi.org/10.1016/j.burns.2016.10.010 PMid:28040363
- Roy S, Santra S, Das A, Dixith S, Sinha M, Ghatak S, et al. Staphylococcus aureus biofilm infection compromises wound healing by causing deficiencies in granulation tissue collagen. Ann Surg. 2019;271(6):1174-85. https://doi.org/10.1097/SLA.0000000000003053 PMid:30614873
- Lone AG, Atci E, Renslow R, Beyenal H, Noh S, Fransson B, et al. Staphylococcus aureus induces hypoxia and cellular damage in porcine dermal explants. Infect Immun. 2015;83(6):2531-41. https://doi.org/10.1128/IAI.03075-14 PMid:25847960
- Naik S, Bouladoux N, Linehan JL, Han SJ, Harrison OJ, Wilhelm C, et al. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature. 2015;520(7545):104-8. https://doi.org/10.1038/nature14052 PMid:25539086
- Linehan JL, Harrison OJ, Han SJ, Byrd AL, Vujkovic-Cvijin I, Villarino AV, et al. Non-classical immunity controls microbiota impact on skin immunity and tissue repair. Cell. 2018;172(4):784-96.e18. https://doi.org/10.1016/j.cell.2017.12.033 PMid:29358051
- Kim BE, Leung DYM. Significance of skin barrier dysfunction in atopic dermatitis. Allergy Asthma Immunol Res. 2018;10(3):207-15. https://doi.org/10.4168/aair.2018.10.3.207 PMid:29676067
- Cabanillas B, Novak N. Atopic dermatitis and filaggrin. Curr Opin Immunol. 2016;42:1-8. https://doi.org/10.1016/j.coi.2016.05.002 PMid:27206013
- Friedman BC, Goldman RD. Anti-staphylococcal treatment in dermatitis. Can Fam Physician. 2011;57(6):669-71.
- Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22(5):850-9. https://doi.org/10.1101/gr.131029.111 PMid:22310478
- Tauber M, Balica S, Hsu CY, Jean-Decoster C, Lauze C, Redoules D, et al. Staphylococcus aureus density on lesional and nonlesional skin is strongly associated with disease severity in atopic dermatitis. J Allergy Clin Immunol. 2016;137(4):1272-74.e3. https://doi.org/10.1016/j.jaci.2015.07.052 PMid:26559326
- Fleury OM, McAleer MA, Feuillie C, Formosa-Dague C, Sansevere E, Bennett DE, et al. Clumping factor B promotes adherence of Staphylococcus aureus to corneocytes in atopic dermatitis. Infect Immun. 2017;85(6):e00994-16. https://doi.org/10.1128/IAI.00994-16 PMid:28373353
- Foster TJ, Geoghegan JA, Ganesh VK, Höök M. Adhesion, invasion and evasion: The many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol. 2014;12(1):49-62. https://doi.org/10.1038/nrmicro3161 PMid:24336184
- Mulcahy ME, Geoghegan JA, Monk IR, O’Keeffe KM, Walsh EJ, Foster TJ, et al. Nasal colonisation by Staphylococcus aureus depends upon clumping factor B binding to the squamous epithelial cell envelope protein loricrin. PLoS Pathog. 2012;8(12):e1003092. https://doi.org/10.1371/journal.ppat.1003092 PMid:23300445
- Xu SX, McCormick JK. Staphylococcal superantigens in colonization and disease. Front Cell Infect Microbiol. 2012;2:52. https://doi.org/10.3389/fcimb.2012.00052 PMid:22919643
- Krakauer T, Pradhan K, Stiles BG. Staphylococcal superantigens spark host-mediated danger signals. Front Immunol. 2016;7:23. https://doi.org/10.3389/fimmu.2016.00023 PMid:26870039
- Schlievert PM, Case LC, Strandberg KL, Abrams BB, Leung DY. Superantigen profile of Staphylococcus aureus isolates from patients with steroid-resistant atopic dermatitis. Clin Infect Dis. 2008;46(10):1562-7. https://doi.org/10.1086/586746 PMid:18419342
- Cornelissen C, Marquardt Y, Czaja K, Wenzel J, Frank J, Lüscher-Firzlaff J, et al. IL-31 regulates differentiation and filaggrin expression in human organotypic skin models. J Allergy Clin Immunol. 2012;129(2):426-33.e4338. https://doi.org/10.1016/j.jaci.2011.10.042 PMid:22177328
- Brauweiler AM, Goleva E, Leung DY. Interferon-γ protects from staphylococcal alpha toxin-induced keratinocyte death through apolipoprotein L1. J Invest Dermatol. 2016;136(3):658-64. https://doi.org/10.1016/j.jid.2015.12.006 PMid:27015454
- Jun SH, Lee JH, Kim SI, Choi CW, Park TI, Jung HR, et al. Staphylococcus aureus -derived membrane vesicles exacerbate skin inflammation in atopic dermatitis. Clin Exp Allergy. 2017;47(1):85-96. https://doi.org/10.1111/cea.12851 PMid:27910159
- Nakamura Y, Oscherwitz J, Cease KB, Chan SM, Muñoz-Planillo R, Hasegawa M, et al. Staphylococcus θ-toxin induces allergic skin disease by activating mast cells. Nature. 2013;503(7476):397-401. https://doi.org/10.1038/nature12655 PMid:24172897
- Sonesson A, Przybyszewska K, Eriksson S, Mörgelin M, Kjellström S, Davies J, et al. Identification of bacterial biofilm and the Staphylococcus aureus derived protease, staphopain, on the skin surface of patients with atopic dermatitis. Sci Rep. 2017;7(1):8689. https://doi.org/10.1038/s41598-017-08046-2 PMid:28821865
- Gonzalez T, Biagini Myers JM, Herr AB, Khurana Hershey GK. Staphylococcal biofilms in atopic dermatitis. Curr Allergy Asthma Rep. 2017;17(12):81. https://doi.org/10.1007/s11882-017-0750-x PMid:29063212
- Di Domenico EG, Cavallo I, Bordignon V, Prignano G, Sperduti I, Gurtner A, et al. Inflammatory cytokines and biofilm production sustain Staphylococcus aureus outgrowth and persistence: A pivotal interplay in the pathogenesis of Atopic Dermatitis. Sci Rep. 2018;8(1):9573. https://doi.org/10.1038/s41598-018-27421-1 PMid:29955077
- Eriksson S, van der Plas MJ, Mörgelin M, Sonesson A. Antibacterial and antibiofilm effects of sodium hypochlorite against Staphylococcus aureus isolates derived from patients with atopic dermatitis. Br J Dermatol. 2017;177(2):513-21. https://doi.org/10.1111/bjd.15410 PMid:28238217
- Wong SM, Ng TG, Baba R. Efficacy and safety of sodium hypochlorite (bleach) baths in patients with moderate to severe atopic dermatitis in Malaysia. J Dermatol. 2013;40(11):874-80. https://doi.org/10.1111/1346-8138.12265 PMid:24111816
- Doudoulakakis A, Spiliopoulou I, Spyridis N, Giormezis N, Kopsidas J, Militsopoulou M, et al. Emergence of a Staphylococcus aureus clone resistant to mupirocin and fusidic acid carrying exotoxin genes and causing mainly skin infections. J Clin Microbiol. 2017;55(8):2529-37. https://doi.org/10.1128/JCM.00406-17 PMid:28592549
- Leung DY. Can antibiotics be harmful in atopic dermatitis? Br J Dermatol. 2018;179(4):807-8. https://doi.org/10.1111/bjd.17023 PMid:30318811
- Błażewicz I, Jaśkiewicz M, Bauer M, Piechowicz L, Nowicki RJ, Kamysz W, et al. Decolonization of Staphylococcus aureus in patients with atopic dermatitis: A reason for increasing resistance to antibiotics? Postepy Dermatol Alergol. 2017;34(6):553-60. https://doi.org/10.5114/ada.2017.72461 PMid:29422820
- Cavalcante FS, Abad ED, Lyra YC, Saintive SB, Ribeiro M, Ferreira DC, et al. High prevalence of methicillin resistance and PVL genes among Staphylococcus aureus isolates from the nares and skin lesions of pediatric patients with atopic dermatitis. Braz J Med Biol Res. 2015;48(7):588-94. https://doi.org/10.1590/1414-431X20154221 PMid:25992644
- Jagadeesan S, Kurien G, Divakaran MV, Sadanandan SM, Sobhanakumari K, Sarin A. Methicillin-resistant Staphylococcus aureus colonization and disease severity in atopic dermatitis: A cross-sectional study from South India. Indian J Dermatol Venereol Leprol. 2014;80(3):229-34. https://doi.org/10.4103/0378-6323.132250 PMid:24823400
- Jung MY, Chung JY, Lee HY, Park J, Lee DY, Yang JM. Antibiotic susceptibility of Staphylococcus aureus in atopic dermatitis: Current prevalence of methicillin-resistant Staphylococcus aureus in Korea and treatment strategies. Ann Dermatol. 2015;27(4):398-403. https://doi.org/10.5021/ad.2015.27.4.398 PMid:26273155
- Błażewicz I, Jaśkiewicz M, Piechowicz L, Neubauer D, Nowicki RJ, Kamysz W, et al. Activity of antimicrobial peptides and conventional antibiotics against superantigen positive Staphylococcus aureus isolated from patients with atopic dermatitis. Postepy Dermatol Alergol. 2018;35(1):74-82. https://doi.org/10.5114/ada.2018.62141 PMid:29599675
- World Health Organization. Global Report on Psoriasis. Geneva: WHO; 2016. Available from: https://apps.who.int/iris/handle/10665/204417 [Last accessed on 2020 Jan 02].
- Boehncke WH, Schön MP. Psoriasis. Lancet. 2015;386(997):983-94. https://doi.org/10.1016/S0140-6736(14)61909-7 PMid:26025581
- Balci DD, Duran N, Ozer B, Gunesacar R, Onlen Y, Yenin JZ. High prevalence of Staphylococcus aureus cultivation and superantigen production in patients with psoriasis. Eur J Dermatol. 2009;19(3):238-42. https://doi.org/10.1684/ejd.2009.0663 PMid:19286488
- Zhang J, Shaver C, Neidig L, Jones K, Cusack CA, Allen HB. Toll-Like receptor 2 and its relationship with Streptococcus in psoriasis. Skinmed. 2017;15(1):27-30.
- Chang HW, Yan D, Singh R, Liu J, Lu X, Ucmak D, et al. Alteration of the cutaneous microbiome in psoriasis and potential role in Th17 polarization. Microbiome. 2018;6(1):154. https://doi.org/10.1186/s40168-018-0533-1 PMid:30185226
- Fyhrquist N, Muirhead G, Prast-Nielsen S, Jeanmougin M, Olah P, Skoog T, et al. Microbe-host interplay in atopic dermatitis and psoriasis. Nat Commun. 2019;10(1):4703. https://doi.org/10.1038/s41467-019-12253-y PMid:31619666
- Ryu S, Broussard L, Youn C, Song B, Norris D, Armstrong CA, et al. Therapeutic effects of synthetic antimicrobial peptides, TRAIL and NRP1 blocking peptides in psoriatic keratinocytes. Chonnam Med J. 2019;55(2):75-85. https://doi.org/10.4068/cmj.2019.55.2.75 PMid:31161119
- Göçmen Jülide Sedef, Sahiner N, Koçak M, Karahan ZC. PCR investigation of panton-valentine leukocidin, enterotoxin, exfoliative toxin, and agr genes in Staphylococcus aureus strains isolated from psoriasis patients. Turk J Med Sci. 2015;45(6):1345-52.
- Ng CY, Huang YH, Chu CF, Wu TC, Liu SH. Risks for Staphylococcus aureus colonization in patients with psoriasis: A systematic review and meta-analysis. Br J Dermatol. 2017;177(4):967-77. https://doi.org/10.1111/bjd.15366 PMid:28160277
- Coia JE, Duckworth GJ, Edwards DI, Farrington M, Fry C, Humphreys H, et al. Guidelines for the control and prevention of meticillin-resistant Staphylococcus aureus (MRSA) in healthcare facilities. J Hosp Infect. 2006;63 Suppl 1:S1-44. https://doi.org/10.1016/j.jhin.2006.01.001 PMid:16581155
- Rahman M, Noble W, Cookson B, Baird D, Coia J. Mupirocin-resistant Staphylococcus aureus. Lancet. 1987;330:387-8.
- Pérez-Roth E, Claverie-Martín F, Batista N, Moreno A, Méndez-Alvarez S. Mupirocin resistance in methicillin-resistant Staphylococcus aureus clinical isolates in a Spanish hospital. Co-application of multiplex PCR assay and conventional microbiology methods. Diagn Microbiol Infect Dis. 2002;43(2):123-8. https://doi.org/10.1016/s0732-8893(02)00388-7 PMid:12088619
- Antonov NK, Garzon MC, Morel KD, Whittier S, Planet PJ, Lauren CT. High prevalence of mupirocin resistance in Staphylococcus aureus isolates from a pediatric population. Antimicrob Agents Chemother. 2015;59(6):3350-6. https://doi.org/10.1128/AAC.00079-15 PMid:25824213
- Sendker J, Sheridan H. History and current status of herbal medicines. In: Pelkonen O, Duez P, Vuorela PM, Vuorela H, editors. Toxicology of Herbal Products. Cham: Springer International Publishing; 2017. p. 11-27.
- Kumar S, Dobos GJ, Rampp T. The significance of ayurvedic medicinal plants. J Evid Based Complementary Altern Med. 2017;22(3):494-501. https://doi.org/10.1177/2156587216671392 PMid:27707902
- Hu J, Zhang J, Zhao W, Zhang Y, Zhang L, Shang H. Cochrane systematic reviews of Chinese herbal medicines: An overview. PLoS One. 2011;6(12):e28696. https://doi.org/10.1371/journal.pone.0028696 PMid:22174870
- Chevallier A. Encyclopedia of Herbal Medicine: 550 Herbs and Remedies for Common Ailments: Penguin. United Kingdom: DK Publishing; 2016.
- Clarke P. Aboriginal healing practices and Australian bush medicine. J Anthropol Soc South Aust. 2008;33:3-38.
- Rossiter SE, Fletcher MH, Wuest WM. Natural products as platforms to overcome antibiotic resistance. Chem Rev. 2017;117(19):12415-74. https://doi.org/10.1021/acs.chemrev.7b00283 PMid:28953368
- Abreu AC, McBain AJ, Simões M. Plants as sources of new antimicrobials and resistance-modifying agents. Nat Prod Rep. 2012;29(9):1007-21. https://doi.org/10.1039/c2np20035j PMid:22786554
- Wagner H. Synergy research: Approaching a new generation of phytopharmaceuticals. Fitoterapia. 2011;82(1):34-7. https://doi.org/10.1016/j.fitote.2010.11.016 PMid:21075177
- Roberts SC. Production and engineering of terpenoids in plant cell culture. Nat Chem Biol. 2007;3(7):387-95. https://doi.org/10.1038/nchembio.2007.8 PMid:17576426
- Griffin SG, Wyllie SG, Markham JL, Leach DN. The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Fragr J. 1999;14:322-32.
- Burt S. Essential oils: Their antibacterial properties and potential applications in foods--a review. Int J Food Microbiol. 2004;94(3):223-53. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022 PMid:15246235
- Friedman M. Chemistry and multibeneficial bioactivities of carvacrol (4-isopropyl-2-methylphenol), a component of essential oils produced by aromatic plants and spices. J Agric Food Chem. 2014;62(31):7652-70. https://doi.org/10.1021/jf5023862 PMid:25058878
- Nostro A, Blanco AR, Cannatelli MA, Enea V, Flamini G, Morelli I, et al. Susceptibility of methicillin-resistant staphylococci to oregano essential oil, carvacrol and thymol. FEMS Microbiol Lett. 2004;230(2):191-5. https://doi.org/10.1016/S0378-1097(03)00890-5 PMid:14757239
- Cho Y, Lee HJ. Antibacterial effects of carvacrol against Staphylococcus aureus and Escherichia coli O157: H7. J Biomed Res. 2014;15:117-22.
- García-Salinas S, Elizondo-Castillo H, Arruebo M, Mendoza G, Irusta S. Evaluation of the antimicrobial activity and cytotoxicity of different components of natural origin present in essential oils. Molecules. 2018;23(6):1399. https://doi.org/10.3390/molecules23061399 PMid:29890713
- Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel). 2013;6(12):1451-74. https://doi.org/10.3390/ph6121451 PMid:24287491
- Di Pasqua R, Betts G, Hoskins N, Edwards M, Ercolini D, Mauriello G. Membrane toxicity of antimicrobial compounds from essential oils. J Agric Food Chem. 2007;55(12):4863-70. https://doi.org/10.1021/jf0636465 PMid:17497876
- Bayer AS, Prasad R, Chandra J, Koul A, Smriti M, Varma A, et al. In vitro resistance of Staphylococcus aureus to thrombin-induced platelet microbicidal protein is associated with alterations in cytoplasmic membrane fluidity. Infect Immun. 2000;68(6):3548-53. https://doi.org/10.1128/iai.68.6.3548-3553.2000 PMid:10816510
- Mouwakeh A, Kincses A, Nové M, Mosolygó T, Mohácsi-Farkas C, Kiskó G, et al. Nigella sativa essential oil and its bioactive compounds as resistance modifiers against Staphylococcus aureus. Phytother Res. 2019;33(4):1010-8. https://doi.org/10.1002/ptr.6294 PMid:30672036
- Mahizan NA, Yang SK, Moo CL, Song AA, Chong CM, Chong CW, et al. Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules. 2019;24(14):2631. https://doi.org/10.3390/molecules24142631 PMid:31330955
- Vasconcelos SE, Melo HM, Cavalcante TT, Júnior FE, de Carvalho MG, Menezes FG, et al. Plectranthus amboinicus essential oil and carvacrol bioactive against planktonic and biofilm of oxacillin- and vancomycin-resistant Staphylococcus aureus. BMC Complement Altern Med. 2017;17(1):462. https://doi.org/10.1186/s12906-017-1968-9 PMid:28915875
- Marchese A, Arciola CR, Coppo E, Barbieri R, Barreca D, Chebaibi S, et al. The natural plant compound carvacrol as an antimicrobial and anti-biofilm agent: Mechanisms, synergies and bio-inspired anti-infective materials. Biofouling. 2018;34(6):630-56. https://doi.org/10.1080/08927014.2018.1480756 PMid:30067078
- Hyldgaard M, Mygind T, Meyer RL. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front Microbiol. 2012;3:12. https://doi.org/10.3389/fmicb.2012.00012 PMid:22291693
- Mir M, Ahmed N, Permana AD, Rodgers AM, Donnelly RF, Rehman AU. Enhancement in site-specific delivery of carvacrol against methicillin resistant Staphylococcus aureus induced skin infections using enzyme responsive nanoparticles: A proof of concept study. Pharmaceutics. 2019;11(11):606. https://doi.org/10.3390/pharmaceutics11110606 PMid:31766227
- Goodner K, Mahattanatawee K, Plotto A, Sotomayor J, Jordan M. Aromatic profiles of Thymus hyemalis and Spanish T. vulgaris essential oils by GC–MS/GC–O. Ind Crops Prod. 2006;24:264-8.
- Figiel A, Szumny A, Gutiérrez-Ortíz A, Carbonell-Barrachina ÁA. Composition of oregano essential oil (Origanum vulgare) as affected by drying method. J Food Eng. 2010;98:240-7. https://doi.org/10.1016/j.jfoodeng.2010.01.002
- Deb DD, Parimala G, Saravana Devi S, Chakraborty T. Effect of thymol on peripheral blood mononuclear cell PBMC and acute promyelotic cancer cell line HL-60. Chem Biol Interact. 2011;193(1):97-106. https://doi.org/10.1016/j.cbi.2011.05.009 PMid:21640085
- Salehi B, Mishra AP, Shukla I, Sharifi-Rad M, Contreras MD, Segura-Carretero A, et al. Thymol, thyme, and other plant sources: Health and potential uses. Phytother Res. 2018;32(9):1688-706. https://doi.org/10.1002/ptr.6109 PMid:29785774
- Andersen A. Final report on the safety assessment of sodium p-chloro-m-cresol, p-chloro-m-cresol, chlorothymol, mixed cresols, m-cresol, o-cresol, p-cresol, isopropyl cresols, thymol, o-cymen-5-ol, and carvacrol. Int J Toxicol. 2006;25 Suppl 1:29-127. https://doi.org/10.1080/10915810600716653 PMid:16835130
- Flamee S, Gizani S, Caroni C, Papagiannoulis L, Twetman S. Effect of a chlorhexidine/thymol and a fluoride varnish on caries development in erupting permanent molars: A comparative study. Eur Arch Paediatr Dent. 2015;16(6):449-54. https://doi.org/10.1007/s40368-015-0192-x PMid:26059497
- Kifer D, Mužinić V, Klarić MŠ. Antimicrobial potency of single and combined mupirocin and monoterpenes, thymol, menthol and 1,8-cineole against Staphylococcus aureus planktonic and biofilm growth. J Antibiot (Tokyo). 2016;69(9):689-96. https://doi.org/10.1038/ja.2016.10 PMid:26883392
- Hamoud R, Zimmermann S, Reichling J, Wink M. Synergistic interactions in two-drug and three-drug combinations (thymol, EDTA and vancomycin) against multi drug resistant bacteria including E. coli. Phytomedicine. 2014;21(4):443-7. https://doi.org/10.1016/j.phymed.2013.10.016 PMid:24262063
- Lv F, Liang H, Yuan Q, Li C. In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms. Food Res Int. 2011;44(9):3057-64. https://doi.org/10.1016/j.foodres.2011.07.030
- Zhou W, Wang Z, Mo H, Zhao Y, Li H, Zhang H, et al. Thymol mediates bactericidal activity against Staphylococcus aureus by targeting an aldo-keto reductase and consequent depletion of NADPH. J Agric Food Chem. 2019;67:8382-92. https://doi.org/10.1021/acs.jafc.9b03517 PMid:31271032
- Yuan Z, Dai Y, Ouyang P, Rehman T, Hussain S, Zhang T, et al. Thymol inhibits biofilm formation, eliminates pre-existing biofilms, and enhances clearance of methicillin-resistant Staphylococcus aureus (MRSA) in a mouse peritoneal implant infection model. Microorganisms. 2020;8(1):99. https://doi.org/10.3390/microorganisms8010099 PMid:31936809
- Kwon HI, Jeong NH, Jun SH, Son JH, Kim S, Jeon H, et al. Thymol attenuates the worsening of atopic dermatitis induced by Staphylococcus aureus membrane vesicles. Int Immunopharmacol. 2018;59:301-9. https://doi.org/10.1016/j.intimp.2018.04.027 PMid:29679854
- Kwon HI, Jeong NH, Kim SY, Kim MH, Son JH, Jun SH, et al. Inhibitory effects of thymol on the cytotoxicity and inflammatory responses induced by Staphylococcus aureus extracellular vesicles in cultured keratinocytes. Microb Pathog. 2019;134:103603. https://doi.org/10.1016/j.micpath.2019.103603 PMid:31226290
- Carson CF, Cookson BD, Farrelly HD, Riley TV. Susceptibility of methicillin-resistant Staphylococcus aureus to the essential oil of Melaleuca alternifolia. J Antimicrob Chemother. 1995;35(3):421-4. https://doi.org/10.1093/jac/35.3.421 PMid:7782258
- Schnitzler P, Schön K, Reichling J. Antiviral activity of Australian tea tree oil and eucalyptus oil against herpes simplex virus in cell culture. Pharmazie. 2001;56(4):343-7.
- Mondello F, De Bernardis F, Girolamo A, Salvatore G, Cassone A. In vitro and in vivo activity of tea tree oil against azole-susceptible and -resistant human pathogenic yeasts. J Antimicrob Chemother. 2003;51(5):1223-9. https://doi.org/10.1093/jac/dkg202 PMid:12668571
- Hammer KA, Dry L, Johnson M, Michalak EM, Carson CF, Riley TV. Susceptibility of oral bacteria to Melaleuca alternifolia (tea tree) oil in vitro. Oral Microbiol Immunol. 2003;18(6):389-92. https://doi.org/10.1046/j.0902-0055.2003.00105.x PMid:14622345
- Loughlin R, Gilmore BF, McCarron PA, Tunney MM. Comparison of the cidal activity of tea tree oil and terpinen-4-ol against clinical bacterial skin isolates and human fibroblast cells. Lett Appl Microbiol. 2008;46(4):428-33. https://doi.org/10.1111/j.1472-765X.2008.02334.x PMid:18298453
- Noumi E, Merghni A, M Alreshidi M, Haddad O, Akmadar G, De Martino L, et al. Chromobacterium violaceum and Pseudomonas aeruginosa PAO1: Models for evaluating anti-quorum sensing activity of Melaleuca alternifolia essential oil and its main component Terpinen-4-ol. Molecules. 2018;23(10):2672. https://doi.org/10.3390/molecules23102672 PMid:30336602
- Brun P, Bernabè G, Filippini R, Piovan A. In vitro antimicrobial activities of commercially available tea tree (Melaleuca alternifolia) essential oils. Curr Microbiol. 2019;76(1):108-16. https://doi.org/10.1007/s00284-018-1594-x PMid:30421144
- Carson CF, Mee BJ, Riley TV. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother. 2002;46(6):1914-20. https://doi.org/10.1128/AAC.46.6.1914-1920.2002 PMid:12019108
- Jacobs MR, Appelbaum PC. Nadifloxacin: A quinolone for topical treatment of skin infections and potential for systemic use of its active isomer, WCK 771. Expert Opin Pharmacother. 2006;7(14):1957-66. https://doi.org/10.1517/14656566.7.14.1957 PMid:17020421
- Li WR, Li HL, Shi QS, Sun TL, Xie XB, Song B, et al. The dynamics and mechanism of the antimicrobial activity of tea tree oil against bacteria and fungi. Appl Microbiol Biotechnol. 2016;100(20):8865-75. https://doi.org/10.1007/s00253-016-7692-4 PMid:27388769
- Sanyal D, Greenwood D. An electronmicroscope study of glycopeptide antibiotic-resistant strains of Staphylococcus epidermidis. J Med Microbiol. 1993;39(3):204-10. https://doi.org/10.1099/00222615-39-3-204 PMid:8366519
- Corre J, Lucchini JJ, Mercier GM, Cremieux A. Antibacterial activity of phenethyl alcohol and resulting membrane alterations. Res Microbiol. 1990;141(4):483-97. https://doi.org/10.1016/0923-2508(90)90074-z PMid:1697975
- Ramadan MA, Shawkey AE, Rabeh MA, Abdellatif AO. Promising antimicrobial activities of oil and silver nanoparticles obtained from Melaleuca alternifolia leaves against selected skin-infecting pathogens. J Herb Med. 2019;20:100289. https://doi.org/10.1016/j.hermed.2019.100289
- Kwieciński J, Eick S, Wójcik K. Effects of tea tree (Melaleuca alternifolia) oil on Staphylococcus aureus in biofilms and stationary growth phase. Int J Antimicrob Agents. 2009;33(4):343-7. https://doi.org/10.1016/j.ijantimicag.2008.08.028 PMid:19095413
- Brady A, Loughlin R, Gilpin D, Kearney P, Tunney M. In vitro activity of tea-tree oil against clinical skin isolates of meticillin-resistant and -sensitive Staphylococcus aureus and coagulase-negative staphylococci growing planktonically and as biofilms. J Med Microbiol. 2006;55(Pt 10):1375-80. https://doi.org/10.1099/jmm.0.46558-0 PMid:17005786
- Hammer KA, Carson CF, Riley TV. Frequencies of resistance to Melaleuca alternifolia (tea tree) oil and rifampicin in Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecalis. Int J Antimicrob Agents. 2008;32(2):170-3. https://doi.org/10.1016/j.ijantimicag.2008.03.013 PMid:18571379
- Ferrini AM, Mannoni V, Aureli P, Salvatore G, Piccirilli E, Ceddia T, et al. Melaleuca alternifolia essential oil possesses potent anti-staphylococcal activity extended to strains resistant to antibiotics. Int J Immunopathol Pharmacol. 2006;19(3):539-44. https://doi.org/10.1177/039463200601900309 PMid:17026838
- Papadopoulos CJ, Carson CF, Hammer KA, Riley TV. Susceptibility of pseudomonads to Melaleuca alternifolia (tea tree) oil and components. J Antimicrob Chemother. 2006;58(2):449-51. https://doi.org/10.1093/jac/dkl200 PMid:16735435
- Papadopoulos CJ, Carson CF, Chang BJ, Riley TV. Role of the MexAB-OprM efflux pump of Pseudomonas aeruginosa in tolerance to tea tree (Melaleuca alternifolia) oil and its monoterpene components terpinen-4-ol, 1,8-cineole, and alpha-terpineol. Appl Environ Microbiol. 2008;74(6):1932-5. https://doi.org/10.1128/AEM.02334-07 PMid:18192403
- Hammer KA, Carson CF, Riley TV. Effects of Melaleuca alternifolia (tea tree) essential oil and the major monoterpene component terpinen-4-ol on the development of single- and multistep antibiotic resistance and antimicrobial susceptibility. Antimicrob Agents Chemother. 2012;56(2):909-15. https://doi.org/10.1128/AAC.05741-11 PMid:22083482
- Thomsen NA, Hammer KA, Riley TV, Van Belkum A, Carson CF. Effect of habituation to tea tree (Melaleuca alternifolia) oil on the subsequent susceptibility of Staphylococcus spp. to antimicrobials, triclosan, tea tree oil, terpinen-4-ol and carvacrol. Int J Antimicrob Agents. 2013;41(4):343-51. https://doi.org/10.1016/j.ijantimicag.2012.12.011 PMid:23481659
- Hart PH, Brand C, Carson CF, Riley TV, Prager RH, Finlay-Jones JJ. Terpinen-4-ol, the main component of the essential oil of Melaleuca alternifolia (tea tree oil), suppresses inflammatory mediator production by activated human monocytes. Inflamm Res. 2000;49(11):619-26. https://doi.org/10.1007/s000110050639 PMid:11131302
- Nogueira MN, Aquino SG, Rossa Junior C, Spolidorio DM. Terpinen-4-ol and alpha-terpineol (tea tree oil components) inhibit the production of IL-1β, IL-6 and IL-10 on human macrophages. Inflamm Res. 2014;63(9):769-78. https://doi.org/10.1007/s00011-014-0749-x PMid:24947163
- Brand C, Ferrante A, Prager RH, Riley TV, Carson CF, Finlay-Jones JJ, et al. The water-soluble components of the essential oil of Melaleuca alternifolia (tea tree oil) suppress the production of superoxide by human monocytes, but not neutrophils, activated in vitro. Inflamm Res. 2001;50:213-9. https://doi.org/10.1007/s000110050746
- Koh KJ, Pearce AL, Marshman G, Finlay-Jones JJ, Hart PH. Tea tree oil reduces histamine-induced skin inflammation. Br J Dermatol. 2002;147(6):1212-7. https://doi.org/10.1046/j.1365-2133.2002.05034.x PMid:12452873
- Han X, Parker TL. Melaleuca (Melaleuca alternifolia) essential oil demonstrates tissue-remodeling and metabolism-modulating activities in human skin cells. Cogent Biol. 2017;3:1318476.
- Aspres N, Freeman S. Predictive testing for irritancy and allergenicity of tea tree oil in normal human subjects. Exogenous Dermatol. 2003;2:258-61.
- Rubel DM, Freeman S, Southwell IA. Tea tree oil allergy: What is the offending agent? Report of three cases of tea tree oil allergy and review of the literature. Australas J Dermatol. 1998;39(4):244-7. https://doi.org/10.1111/j.1440-0960.1998.tb01482.x PMid:9838722
- Hausen BM, Reichling J, Harkenthal M. Degradation products of monoterpenes are the sensitizing agents in tea tree oil. Am J Contact Dermat. 1999;10(2):68-77. https://doi.org/10.1016/s1046-199x(99)90002-7 PMid:10357714
- Rudbäck J, Bergström MA, Börje A, Nilsson U, Karlberg AT. α-Terpinene, an antioxidant in tea tree oil, autoxidizes rapidly to skin allergens on air exposure. Chem Res Toxicol. 2012;25(3):713-21. https://doi.org/10.1021/tx200486f PMid:22250748
- Tisserand R, Young R. Constituent profiles. In: Essential Oil Safety. 2nd ed. St. Louis: Churchill Livingstone; 2014. p. 483-647.
- Wang X, Wang Q, Shi J. Simulation of the vacuum distillation separating process of citral from litsea cubeba oil. Med Plant. 2013;4:8.
- Shi C, Song K, Zhang X, Sun Y, Sui Y, Chen Y, et al. Antimicrobial activity and possible mechanism of action of citral against Cronobacter sakazakii. PLoS One. 2016;11(7):e0159006. https://doi.org/10.1371/journal.pone.0159006 PMid:27415761
- Saddiq AA, Khayyat SA. Chemical and antimicrobial studies of monoterpene: Citral. Pest Biochem Physiol. 2010;98:89-93. https://doi.org/10.1016/j.pestbp.2010.05.004
- Wuryatmo E, Klieber A, Scott ES. Inhibition of Citrus postharvest pathogens by vapor of citral and related compounds in culture. J Agric Food Chem. 2003;51(9):2637-40. https://doi.org/10.1021/jf026183l PMid:12696950.
- Nordin N, Yeap SK, Rahman HS, Zamberi NR, Abu N, Mohamad NE, et al. In vitro cytotoxicity and anticancer effects of citral nanostructured lipid carrier on MDA MBA-231 human breast cancer cells. Sci Rep. 2019;9(1):1614. https://doi.org/10.1038/s41598-018-38214-x PMid:30733560
- Dudai N, Weinstein Y, Krup M, Rabinski T, Ofir R. Citral is a new inducer of caspase-3 in tumor cell lines. Planta Med. 2005;71(5):484-8. https://doi.org/10.1055/s-2005-864146 PMid:15931590
- Kim JJ, In YW, Oh SW. Antimicrobial activity of citral against Salmonella Typhimurium and Staphylococcus aureus. Korean J Food Sci Technol. 2011;43:791-4.
- Vimal M, Vijaya P, Mumtaj P, Farhath M. Antibacterial activity of selected compounds of essential oils from indigenous plants. J Chem Pharm Res. 2013;5:248-53.
- Long N, Tang H, Sun F, Lin L, Dai M. Effect and mechanism of citral against methicillin-resistant Staphylococcus aureus in vivo. J Sci Food Agric. 2019;99(9):4423-9. https://doi.org/10.1002/jsfa.9677 PMid:30891759
- Gupta P, Patel DK, Gupta VK, Pal A, Tandon S, Darokar MP. Citral, a monoterpenoid aldehyde interacts synergistically with norfloxacin against methicillin resistant Staphylococcus aureus. Phytomedicine. 2017;34:85-96. https://doi.org/10.1016/j.phymed.2017.08.016 PMid:28899514
- Ambade SV, Nagarkar SS, Deshpande NM. Evaluation of lemon grass essential oil as an antimicrobial agent against clinical isolates of MRSA, VRSA and VRE. Int J Biotechnol Biochem. 2017;13:377-90.
- Hu W, Li C, Dai J, Cui H, Lin L. Antibacterial activity and mechanism of Litsea cubeba essential oil against methicillin-resistant Staphylococcus aureus (MRSA). Ind Crops Prod. 2019;130:34-41. https://doi.org/10.1016/j.indcrop.2018.12.078
- Stotz SC, Vriens J, Martyn D, Clardy J, Clapham DE. Citral sensing by Transient [corrected] receptor potential channels in dorsal root ganglion neurons. PLoS One. 2008;3(5):e2082. https://doi.org/10.1371/journal.pone.0002082 PMid:18461159
- Hagvall L, Bruze M, Engfeldt M, Isaksson M, Lindberg M, Ryberg K, et al. Contact allergy to citral and its constituents geranial and neral, coupled with reactions to the prehapten and prohapten geraniol. Contact Dermatitis. 2020;82:31-38. https://doi.org/10.1111/cod.13404 PMid:31566752
- De Mozzi P, Johnston GA. An outbreak of allergic contact dermatitis caused by citral in beauticians working in a health spa. Contact Dermatitis. 2014;70(6):377-9. https://doi.org/10.1111/cod.12173 PMid:24846588
- Usta J, Kreydiyyeh S, Barnabe P, Bou-Moughlabay Y, Nakkash-Chmaisse H. Comparative study on the effect of cinnamon and clove extracts and their main components on different types of ATPases. Hum Exp Toxicol. 2003;22(7):355-62. https://doi.org/10.1191/0960327103ht379oa PMid:12929725
- Lee KG, Shibamoto T. Antioxidant properties of aroma compounds isolated from soybeans and mung beans. J Agric Food Chem. 2000;48(9):4290-3. https://doi.org/10.1021/jf000442u PMid:10995351
- Chatterjee D, Bhattacharjee P. Use of eugenol-lean clove extract as a flavoring agent and natural antioxidant in mayonnaise: Product characterization and storage study. J Food Sci Technol. 2015;52(8):4945-54. https://doi.org/10.1007/s13197-014-1573-6 PMid:26243914
- Fujisawa S, Murakami Y. Eugenol and its role in chronic diseases. Adv Exp Med Biol. 2016;929:45-66. https://doi.org/10.1007/978-3-319-41342-6_3 PMid:27771920
- Abdullah ML, Hafez MM, Al-Hoshani A, Al-Shabanah O. Anti-metastatic and anti-proliferative activity of eugenol against triple negative and HER2 positive breast cancer cells. BMC Complement Altern Med. 2018;18(1):321. https://doi.org/10.1186/s12906-018-2392-5 PMid:30518369
- Khalil AA, Ur Rahman U, Khan MR, Sahar A, Mehmood T, Khan M. Essential oil eugenol: Sources, extraction techniques and nutraceutical perspectives. RSC Adv. 2017;7:32669-81.
- Apolónio J, Faleiro ML, Miguel MG, Neto L. No induction of antimicrobial resistance in Staphylococcus aureus and Listeria monocytogenes during continuous exposure to eugenol and citral. FEMS Microbiol Lett. 2014;354(2):92-101. https://doi.org/10.1111/1574-6968.12440 PMid:24716611
- Al-Shabib NA, Husain FM, Ahmad I, Baig MH. Eugenol inhibits quorum sensing and biofilm of toxigenic MRSA strains isolated from food handlers employed in Saudi Arabia. Biotechnol Biotechnol Equipment. 2017;31:387-96.
- Yadav MK, Chae SW, Im GJ, Chung JW, Song JJ. Eugenol: A phyto-compound effective against methicillin-resistant and methicillin-sensitive Staphylococcus aureus clinical strain biofilms. PLoS One. 2015;10(3):e0119564. https://doi.org/10.1371/journal.pone.0119564 PMid:25781975
- Beenken KE, Mrak LN, Griffin LM, Zielinska AK, Shaw LN, Rice KC, et al. Epistatic relationships between sarA and agr in Staphylococcus aureus biofilm formation. PLoS One. 2010;5:e10790. https://doi.org/10.1371/journal.pone.0010790
- Kwiatkowski P, Pruss A, Wojciuk B, Dołęgowska B, Wajs-Bonikowska A, Sienkiewicz M, et al. The influence of essential oil compounds on antibacterial activity of mupirocin-susceptible and induced low-level mupirocin-resistant MRSA strains. Molecules. 2019;24(17):105. https://doi.org/10.3390/molecules24173105 PMid:31461850
- Lestari ML, Indrayanto G. Curcumin. In: Brittain HG, editor. Profiles of Drug Substances, Excipients and Related Methodology. Vol. 39., Ch. 3. Cambridge: Academic Press; 2014. p. 113-204.
- Reddy RC, Vatsala PG, Keshamouni VG, Padmanaban G, Rangarajan PN. Curcumin for malaria therapy. Biochem Biophys Res Commun. 2005;326(2):472-4. https://doi.org/10.1016/j.bbrc.2004.11.051 PMid:15582601
- Wright LE, Frye JB, Gorti B, Timmermann BN, Funk JL. Bioactivity of turmeric-derived curcuminoids and related metabolites in breast cancer. Curr Pharm Des. 2013;19(34):6218-25. https://doi.org/10.2174/1381612811319340013 PMid:23448448
- Mazzolani F, Togni S. Oral administration of a curcuminphospholipid delivery system for the treatment of central serous chorioretinopathy: A 12-month follow-up study. Clin Ophthalmol. 2013;7:939-45. https://doi.org/10.2147/OPTH.S45820 PMid:23723686
- Allegri P, Mastromarino A, Neri P. Management of chronic anterior uveitis relapses: Efficacy of oral phospholipidic curcumin treatment. Long-term follow-up. Clin Ophthalmol. 2010;4:1201-6. https://doi.org/10.2147/OPTH.S13271 PMid:21060672
- Ghosh D, Bagchi D, Konishi T. Clinical Aspects of Functional Foods and Nutraceuticals. United States: CRC Press; 2014.
- Schraufstatter E, Bernt H. Antibacterial action of curcumin and related compounds. Nature. 1949;164(4167):456. https://doi.org/10.1038/164456a0 PMid:18140450
- Gunes H, Gulen D, Mutlu R, Gumus A, Tas T, Topkaya AE. Antibacterial effects of curcumin: An in vitro minimum inhibitory concentration study. Toxicol Ind Health. 2016;32(2):246-50. https://doi.org/10.1177/0748233713498458 PMid:24097361
- Tajbakhsh S, Mohammadi K, Deilami I, Zandi K, Fouladvand M, Ramedani E, et al. Antibacterial activity of indium curcumin and indium diacetylcurcumin. Afr J Biotechnol. 2008;7:3832-5.
- Sivasothy Y, Sulaiman SF, Ooi KL, Ibrahim H, Awang K. Antioxidant and antibacterial activities of flavonoids and curcuminoids from Zingiber spectabile Griff. Food Control. 2013;30:714-20. https://doi.org/10.1016/j.foodcont.2012.09.012
- Mun SH, Kim SB, Kong R, Choi JG, Kim YC, Shin DW, et al. Curcumin reverse methicillin resistance in Staphylococcus aureus. Molecules. 2014;19(11):18283-95. https://doi.org/10.3390/molecules191118283 PMid:25389660
- Mun SH, Joung DK, Kim YS, Kang OH, Kim SB, Seo YS, et al. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine. 2013;20(8-9):714-8. https://doi.org/10.1016/j.phymed.2013.02.006 PMid:23537748
- Teow SY, Ali SA. Synergistic antibacterial activity of Curcumin with antibiotics against Staphylococcus aureus. Pak J Pharm Sci. 2015;28(6):2109-14. PMid:26639480
- Moghaddam KM, Iranshahi M, Yazdi MC, Shahverdi AR. The combination effect of curcumin with different antibiotics against Staphylococcus aureus. Int J Green Pharm. 2009;3:141-3.
- Sardi JC, Polaquini CR, Freires IA, Galvão LC, Lazarini JG, Torrezan GS, et al. Antibacterial activity of diacetylcurcumin against Staphylococcus aureus results in decreased biofilm and cellular adhesion. J Med Microbiol. 2017;66(6):816-24. https://doi.org/10.1099/jmm.0.000494 PMid:28598304
- Kang D, Li B, Luo L, Jiang W, Lu Q, Rong M, et al. Curcumin shows excellent therapeutic effect on psoriasis in mouse model. Biochimie. 2016;123:73-80. https://doi.org/10.1016/j.biochi.2016.01.013 PMid:26826458
- Sun J, Zhao Y, Hu J. Curcumin inhibits imiquimod-induced psoriasis-like inflammation by inhibiting IL-1beta and IL-6 production in mice. PLoS One. 2013;8(6):e67078. https://doi.org/10.1371/journal.pone.0067078 PMid:23825622
- Bahraini P, Rajabi M, Mansouri P, Sarafian G, Chalangari R, Azizian Z. Turmeric tonic as a treatment in scalp psoriasis: A randomized placebo-control clinical trial. J Cosmet Dermatol. 2018;17(3):461-6. https://doi.org/10.1111/jocd.12513 PMid:29607625
- Antiga E, Bonciolini V, Volpi W, Del Bianco E, Caproni M. Oral curcumin (Meriva) is effective as an adjuvant treatment and is able to reduce IL-22 serum levels in patients with psoriasis vulgaris. Biomed Res Int. 2015;2015:283634. https://doi.org/10.1155/2015/283634 PMid:26090395
- Kurd SK, Smith N, VanVoorhees A, Troxel AB, Badmaev V, Seykora JT, et al. Oral curcumin in the treatment of moderate to severe psoriasis vulgaris: A prospective clinical trial. J Am Acad Dermatol. 2008;58(4):625-31. https://doi.org/10.1016/j.jaad.2007.12.035 PMid:18249471
- Gadekar R, Saurabh MK, Thakur GS, Saurabh A. Study of formulation, characterisation and wound healing potential of transdermal patches of curcumin. Asian J Pharm Clin Res. 2012;5:225.
- Phan TT, See P, Lee ST, Chan SY. Protective effects of curcumin against oxidative damage on skin cells in vitro: Its implication for wound healing. J Trauma. 2001;51(5):927-31. https://doi.org/10.1097/00005373-200111000-00017 PMid:11706342
- Subudhi U, Chainy GB. Expression of hepatic antioxidant genes in l-thyroxine-induced hyperthyroid rats: Regulation by vitamin E and curcumin. Chem Biol Interact. 2010;183(2):304-16. https://doi.org/10.1016/j.cbi.2009.11.004 PMid:19914224
- Mohanty C, Das M, Sahoo SK. Sustained wound healing activity of curcumin loaded oleic acid based polymeric bandage in a rat model. Mol Pharm. 2012;9(10):2801-11. https://doi.org/10.1021/mp300075u PMid:22946786
- Sidhu GS, Singh AK, Thaloor D, Banaudha KK, Patnaik GK, Srimal RC, et al. Enhancement of wound healing by curcumin in animals. Wound Repair Regen. 1998;6(2):167-77. https://doi.org/10.1046/j.1524-475x.1998.60211.x PMid:9776860
- Akbik D, Ghadiri M, Chrzanowski W, Rohanizadeh R. Curcumin as a wound healing agent. Life Sci. 2014;116(1):1-7. https://doi.org/10.1016/j.lfs.2014.08.016 PMid:25200875
- Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: Problems and promises. Mol Pharm. 2007;4(6):807-18. https://doi.org/10.1021/mp700113r PMid:17999464
- Han HK. The effects of black pepper on the intestinal absorption and hepatic metabolism of drugs. Expert Opin Drug Metab Toxicol. 2011;7(6):721-9. https://doi.org/10.1517/17425255.2011.570332 PMid:21434835
- Nguyen MH, Vu NB, Nguyen TH, Le HS, Le HT, Tran TT, et al. In vivo comparison of wound healing and scar treatment effect between curcumin-oligochitosan nanoparticle complex and oligochitosan-coated curcumin-loaded-liposome. J Microencapsul. 2019;36(2):156-68. https://doi.org/10.1080/02652048.2019.1612476 PMid:31030591
- Karri VV, Kuppusamy G, Talluri SV, Mannemala SS, Kollipara R, Wadhwani AD, et al. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int J Biol Macromol. 2016;93(Pt B):1519-29. https://doi.org/10.1016/j.ijbiomac.2016.05.038 PMid:27180291
- Radji M, Agustama RA, Elya B, Tjampakasari CR. Antimicrobial activity of green tea extract against isolates of methicillin-resistant Staphylococcus aureus and multi-drug resistant Pseudomonas aeruginosa. Asian Pac J Trop Biomed. 2013;3(8):663-7. https://doi.org/10.1016/S2221-1691(13)60133-1 PMid:23905026
- Yamashita S, Yokoyama K, Matsumiya N, Yamaguchi H. Successful green tea nebulization therapy for subglottic tracheal stenosis due to MRSA infection. J Infect. 2001;42(3):222-3. https://doi.org/10.1053/jinf.2001.0766 PMid:11545562
- Yamada H, Ohashi K, Atsumi T, Okabe H, Shimizu T, Nishio S, et al. Effects of tea catechin inhalation on methicillin-resistant Staphylococcus aureus in elderly patients in a hospital ward. J Hosp Infect. 2003;53(3):229-31. https://doi.org/10.1053/jhin.2002.1327 PMid:12623326
- Yamada H, Tateishi M, Harada K, Ohashi T, Shimizu T, Atsumi T, et al. A randomized clinical study of tea catechin inhalation effects on methicillin-resistant Staphylococcus aureus in disabled elderly patients. J Am Med Dir Assoc. 2006;7(2):79-83. https://doi.org/10.1016/j.jamda.2005.06.002 PMid:16461248
- Yam TS, Hamilton-Miller JM, Shah S. The effect of a component of tea (Camellia sinensis) on methicillin resistance, PBP2’ synthesis, and beta-lactamase production in Staphylococcus aureus. J Antimicrob Chemother. 1998;42(2):211-6. https://doi.org/10.1093/jac/42.2.211 PMid:9738838
- Lee JH, Shim JS, Chung MS, Lim ST, Kim KH. In vitro anti-adhesive activity of green tea extract against pathogen adhesion. Phytother Res. 2009;23(4):460-6. https://doi.org/10.1002/ptr.2609 PMid:19107860
- Sharma A, Gupta S, Sarethy IP, Dang S, Gabrani R. Green tea extract: Possible mechanism and antibacterial activity on skin pathogens. Food Chem. 2012;135(2):672-5. https://doi.org/10.1016/j.foodchem.2012.04.143 PMid:22868144
- Janecki A, Kolodziej H. Anti-adhesive activities of flavan-3-ols and proanthocyanidins in the interaction of group A-streptococci and human epithelial cells. Molecules. 2010;15(10):7139-52. https://doi.org/10.3390/molecules15107139 PMid:20953158
- Busscher HJ, Norde W, van der Mei HC. Specific molecular recognition and nonspecific contributions to bacterial interaction forces. Appl Environ Microbiol. 2008;74(9):2559-64. https://doi.org/10.1128/AEM.02839-07 PMid:18344352
- Stapleton PD, Shah S, Anderson JC, Hara Y, Hamilton-Miller JM, Taylor PW. Modulation of beta-lactam resistance in Staphylococcus aureus by catechins and gallates. Int J Antimicrob Agents. 2004;23(5):462-7. https://doi.org/10.1016/j.ijantimicag.2003.09.027 PMid:15120724
- Hu ZQ, Zhao WH, Hara Y, Shimamura T. Epigallocatechin gallate synergy with ampicillin/sulbactam against 28 clinical isolates of methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother. 2001;48(3):361-4. https://doi.org/10.1093/jac/48.3.361 PMid:11533000
- Zhao WH, Hu ZQ, Okubo S, Hara Y, Shimamura T. Mechanism of synergy between epigallocatechin gallate and beta-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2001;45(6):1737-42. https://doi.org/10.1128/AAC.45.6.1737-1742.2001 PMid:11353619
- Novy P, Rondevaldova J, Kourimska L, Kokoska L. Synergistic interactions of epigallocatechin gallate and oxytetracycline against various drug resistant Staphylococcus aureus strains in vitro. Phytomedicine. 2013;20(5):432-5. https://doi.org/10.1016/j.phymed.2012.12.010 PMid:23485046
- Hu ZQ, Zhao WH, Asano N, Yoda Y, Hara Y, Shimamura T. Epigallocatechin gallate synergistically enhances the activity of carbapenems against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2002;46(2):558-60. https://doi.org/10.1128/AAC.46.2.558-560.2002 PMid:11796378
- Zhao WH, Hu ZQ, Hara Y, Shimamura T. Inhibition of penicillinase by epigallocatechin gallate resulting in restoration of antibacterial activity of penicillin against penicillinase-producing Staphylococcus aureus. Antimicrob Agents Chemother. 2002;46(7):2266-8. https://doi.org/10.1128/AAC.46.7.2266-2268.2002 PMid:12069986
- Sudano Roccaro A, Blanco AR, Giuliano F, Rusciano D, Enea V. Epigallocatechin-gallate enhances the activity of tetracycline in staphylococci by inhibiting its efflux from bacterial cells. Antimicrob Agents Chemother. 2004;48(6):1968-73. https://doi.org/10.1128/AAC.48.6.1968-1973.2004 PMid:15155186
- Bikels-Goshen T, Landau E, Saguy S, Shapira R. Staphylococcal strains adapted to epigallocathechin gallate (EGCG) show reduced susceptibility to vancomycin, oxacillin and ampicillin, increased heat tolerance, and altered cell morphology. Int J Food Microbiol. 2010;138(1-2):26-31. https://doi.org/10.1016/j.ijfoodmicro.2010.01.011 PMid:20132996
- Singh VK, Utaida S, Jackson LS, Jayaswal RK, Wilkinson BJ, Chamberlain NR. Role for dnaK locus in tolerance of multiple stresses in Staphylococcus aureus. Microbiology (Reading). 2007;153(Pt 9):3162-73. https://doi.org/10.1099/mic.0.2007/009506-0 PMid:17768259
- Blanco AR, Sudano-Roccaro A, Spoto GC, Nostro A, Rusciano D. Epigallocatechin gallate inhibits biofilm formation by ocular staphylococcal isolates. Antimicrob Agents Chemother. 2005;49(10):4339-43. https://doi.org/10.1128/AAC.49.10.4339-4343.2005 PMid:16189116
- Carpentier B, Cerf O. Biofilms and their consequences, with particular reference to hygiene in the food industry. J Appl Bacteriol. 1993;75(6):499-511. https://doi.org/10.1111/j.1365-2672.1993.tb01587.x PMid:8294303
- Marinelli P, Pallares I, Navarro S, Ventura S. Dissecting the contribution of Staphylococcus aureus α-phenol-soluble modulins to biofilm amyloid structure. Sci Rep. 2016;6:34552. https://doi.org/10.1038/srep34552 PMid:27708403
- Francesko A, Soares da Costa D, Reis RL, Pashkuleva I, Tzanov T. Functional biopolymer-based matrices for modulation of chronic wound enzyme activities. Acta Biomater. 2013;9(2):5216-25. https://doi.org/10.1016/j.actbio.2012.10.014 PMid:23072830
- Kim HL, Lee JH, Kwon BJ, Lee MH, Han DW, Hyon SH, et al. Promotion of full-thickness wound healing using epigallocatechin-3-O-gallate/poly (lactic-co-glycolic acid) membrane as temporary wound dressing. Artif Organs. 2014;38:411-417. https://doi.org/10.1111/aor.12190
- Huang YW, Zhu QQ, Yang XY, Xu HH, Sun B, Wang XJ, et al. Wound healing can be improved by (-)-epigallocatechin gallate through targeting Notch in streptozotocin-induced diabetic mice. FASEB J. 2019;33(1):953-64. https://doi.org/10.1096/fj.201800337R PMid:30070931
- Gan RY, Li HB, Sui ZQ, Corke H. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review. Crit Rev Food Sci Nutr. 2018;58(6):924-41. https://doi.org/10.1080/10408398.2016.1231168 PMid:27645804
- Liu Z, Bruins ME, Ni L, Vincken JP. Green and black tea phenolics: Bioavailability, transformation by colonic microbiota, and modulation of colonic microbiota. J Agric Food Chem. 2018;66(32):8469-77. https://doi.org/10.1021/acs.jafc.8b02233 PMid:30020786
- Dkhil MA, Abdel-Baki AS, Wunderlich F, Sies H, Al-Quraishy S. Anticoccidial and antiinflammatory activity of garlic in murine Eimeria papillata infections. Vet Parasitol. 2011;175(1-2):66-72. https://doi.org/10.1016/j.vetpar.2010.09.009 PMid:20943319
- Meriga B, Mopuri R, MuraliKrishna T. Insecticidal, antimicrobial and antioxidant activities of bulb extracts of Allium sativum. Asian Pac J Trop Med. 2012;5(5):391-5. https://doi.org/10.1016/S1995-7645(12)60065-0 PMid:22546657
- Cavallito CJ, Buck JS, Suter C. Allicin, the antibacterial principle of Allium sativum. II. Determination of the chemical structure. J Am Chem Soc. 1944;66:1952-4.
- Lawson LD, Wang ZJ. Allicin and allicin-derived garlic compounds increase breath acetone through allyl methyl sulfide: Use in measuring allicin bioavailability. J Agric Food Chem. 2005;53(6):1974-83. https://doi.org/10.1021/jf048323s PMid:15769123
- Block E. The chemistry of garlic and onions. Sci Am. 1985;252(3):114-9. https://doi.org/10.1038/scientificamerican0385-114 PMid:3975593
- Ilić DP, Nikolić VD, Nikolić LB, Stanković MZ, Stanojević LP, Cakić MD. Allicin and related compounds: Biosynthesis, synthesis and pharmacological activity. Facta Univ Ser Phys Chem Technol. 2011;9:9-20.
- Cutler RR, Wilson P. Antibacterial activity of a new, stable, aqueous extract of allicin against methicillin-resistant Staphylococcus aureus. Br J Biomed Sci. 2004;61(2):71-4. https://doi.org/10.1080/09674845.2004.11732646 PMid:15250668
- Müller A, Eller J, Albrecht F, Prochnow P, Kuhlmann K, Bandow JE, et al. Allicin induces thiol stress in bacteria through S-allylmercapto modification of protein cysteines. J Biol Chem. 2016;291(22):11477-90. https://doi.org/10.1074/jbc.M115.702308 PMid:27008862
- Gruhlke MCH, Antelmann H, Bernhardt J, Kloubert V, Rink L, Slusarenko AJ. The human allicin-proteome: S-thioallylation of proteins by the garlic defence substance allicin and its biological effects. Free Radic Biol Med. 2019;131:144-53. https://doi.org/10.1016/j.freeradbiomed.2018.11.022 PMid:30500420
- Fujisawa H, Watanabe K, Suma K, Origuchi K, Matsufuji H, Seki T, et al. Antibacterial potential of garlic-derived allicin and its cancellation by sulfhydryl compounds. Biosci Biotechnol Biochem. 2009;73:1948-55. https://doi.org/10.1271/bbb.90096
- Borlinghaus J, Albrecht F, Gruhlke MC, Nwachukwu ID, Slusarenko AJ. Allicin: Chemistry and biological properties. Molecules. 2014;19(8):12591-618. https://doi.org/10.3390/molecules190812591 PMid:25153873
- Barton D, Hesse RH, O’Sullivan A, Pechet M. A new procedure for the conversion of thiols into reactive sulfenylating agents. J Organ Chem. 1991;56:6697-702.
- Sheppard JG, McAleer JP, Saralkar P, Geldenhuys WJ, Long TE. Allicin-inspired pyridyl disulfides as antimicrobial agents for multidrug-resistant Staphylococcus aureus. Eur J Med Chem. 2018;143:1185-95. https://doi.org/10.1016/j.ejmech.2017.10.018 PMid:29126733
- Loi VV, Huyen NT, Busche T, Tung QN, Gruhlke MC, Kalinowski J, et al. Staphylococcus aureus responds to allicin by global S-thioallylation - role of the Brx/BSH/YpdA pathway and the disulfide reductase MerA to overcome allicin stress. Free Radic Biol Med. 2019;139:55-69. https://doi.org/10.1016/j.freeradbiomed.2019.05.018 PMid:31121222
- Leng BF, Qiu JZ, Dai XH, Dong J, Wang JF, Luo MJ, et al. Allicin reduces the production of α-toxin by Staphylococcus aureus. Molecules. 2011;16:7958-68. https://doi.org/10.3390/molecules16097958 PMid:21921868
- Bernardo K, Pakulat N, Fleer S, Schnaith A, Utermöhlen O, Krut O, et al. Subinhibitory concentrations of linezolid reduce Staphylococcus aureus virulence factor expression. Antimicrob Agents Chemother. 2004;48(2):546-55. https://doi.org/10.1128/aac.48.2.546-555.2004 PMid:14742208
- Ohlsen K, Ziebuhr W, Koller KP, Hell W, Wichelhaus TA, Hacker J. Effects of subinhibitory concentrations of antibiotics on alpha-toxin (hla) gene expression of methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother. 1998;42(11):2817-23. https://doi.org/10.1128/AAC.42.11.2817 PMid:9797209
- Sharifi-Rad J, Hoseini Alfatemi S, Sharifi Rad M, Iriti M. Antimicrobial synergic effect of allicin and silver nanoparticles on skin infection caused by methicillin-resistant Staphylococcus aureus spp. Ann Med Health Sci Res. 2014;4(6):863-8. https://doi.org/10.4103/2141-9248.144883 PMid:25506477
- Pérez-Köhler B, García-Moreno F, Bayon Y, Pascual G, Bellón JM. Inhibition of Staphylococcus aureus adhesion to the surface of a reticular heavyweight polypropylene mesh soaked in a combination of chlorhexidine and allicin: An in vitro study. PLoS One. 2015;10(5):e0126711. https://doi.org/10.1371/journal.pone.0126711 PMid:25962163
- Zhai H, Pan J, Pang E, Bai B. Lavage with allicin in combination with vancomycin inhibits biofilm formation by Staphylococcus epidermidis in a rabbit model of prosthetic joint infection. PLoS One. 2014;9(7):e102760. https://doi.org/10.1371/journal.pone.0102760 PMid:25025650
- Majumdar S, Krishnatreya G, Gogoi N, Thakur D, Chowdhury D. Carbon-dot-coated alginate beads as a smart stimuli-responsive drug delivery system. ACS Appl Mater Interfaces. 2016;8(50):34179-84. https://doi.org/10.1021/acsami.6b10914 PMid:27998111
- Sherry E, Boeck H, Warnke PH. Topical application of a new formulation of eucalyptus oil phytochemical clears methicillin-resistant Staphylococcus aureus infection. Am J Infect Control. 2001;29(5):346. https://doi.org/10.1067/mic.2001.117403 PMid:11584265
- Caelli M, Porteous J, Carson CF, Heller R, Riley TV. Tea tree oil as an alternative topical decolonization agent for methicillin-resistant Staphylococcus aureus. J Hosp Infect. 2000;46(3):236-7. https://doi.org/10.1053/jhin.2000.0830 PMid:11073734
- Blackwood B, Thompson G, McMullan R, Stevenson M, Riley TV, Alderdice FA, et al. Tea tree oil (5%) body wash versus standard care (Johnson’s Baby Softwash) to prevent colonization with methicillin-resistant Staphylococcus aureus in critically ill adults: A randomized controlled trial. J Antimicrob Chemother. 2013;68(5):1193-9. https://doi.org/10.1093/jac/dks501 PMid:23297395
- Lee RL, Leung PH, Wong TK. A randomized controlled trial of topical tea tree preparation for MRSA colonized wounds. Int J Nurs Sci. 2014;1:7-14. https://doi.org/10.1016/j.ijnss.2014.01.001
- Dryden MS, Dailly S, Crouch M. A randomized, controlled trial of tea tree topical preparations versus a standard topical regimen for the clearance of MRSA colonization. J Hosp Infect. 2004;56(4):283-6. https://doi.org/10.1016/j.jhin.2004.01.008 PMid:15066738
- Edmondson M, Newall N, Carville K, Smith J, Riley TV, Carson CF. Uncontrolled, open-label, pilot study of tea tree (Melaleuca alternifolia) oil solution in the decolonisation of methicillin-resistant Staphylococcus aureus positive wounds and its influence on wound healing. Int Wound J. 2011;8(4):375-84. https://doi.org/10.1111/j.1742-481X.2011.00801.x PMid:21564552
- Rees L, Weil A. Integrated medicine. BMJ. 2001;322(7279):119-20. https://doi.org/10.1136/bmj.322.7279.119 PMid:11159553
- Hardy K, Sunnucks K, Gil H, Shabir S, Trampari E, Hawkey P, et al. Increased usage of antiseptics is associated with reduced susceptibility in clinical isolates of Staphylococcus aureus. mBio. 2018;9(3):e00894-18. https://doi.org/10.1128/mBio.00894-18 PMid:29844113
- Hendry ER, Worthington T, Conway BR, Lambert PA. Antimicrobial efficacy of eucalyptus oil and 1,8-cineole alone and in combination with chlorhexidine digluconate against microorganisms grown in planktonic and biofilm cultures. J Antimicrob Chemother. 2009;64(6):1219-25. https://doi.org/10.1093/jac/dkp362 PMid:19837714
- Karpanen TJ, Conway BR, Worthington T, Hilton AC, Elliott TS, Lambert PA. Enhanced chlorhexidine skin penetration with eucalyptus oil. BMC Infect Dis. 2010;10:278. https://doi.org/10.1186/1471-2334-10-278 PMid:20860796
- Kwiatkowski P, Łopusiewicz Ł, Kostek M, Drozłowska E, Pruss A, Wojciuk B, et al. The antibacterial activity of lavender essential oil alone and in combination with octenidine dihydrochloride against MRSA strains. Molecules. 2019;25(1):95. https://doi.org/10.3390/molecules25010095 PMid:31888005
- Kalemba D, Kunicka A. Antibacterial and antifungal properties of essential oils. Curr Med Chem. 2003;10(10):813-29. https://doi.org/10.2174/0929867033457719 PMid:12678685
- El-Kalek HH, Mohamed EA. Synergistic effect of certain medicinal plants and amoxicillin against some clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). Int J Pharm Appl. 2012;3:387-98.
- Warnke PH, Lott AJ, Sherry E, Wiltfang J, Podschun R. The ongoing battle against multi-resistant strains: In-vitro inhibition of hospital-acquired MRSA, VRE, Pseudomonas, ESBL E. coli and Klebsiella species in the presence of plant-derived antiseptic oils. J Craniomaxillofac Surg. 2013;41(4):321-6. https://doi.org/10.1016/j.jcms.2012.10.012 PMid:23199627
- Costa SS, Viveiros M, Amaral L, Couto I. Multidrug efflux pumps in Staphylococcus aureus: An update. Open Microbiol J. 2013;7:59-71. https://doi.org/10.2174/1874285801307010059 PMid:23569469
- Dickson RA, Houghton PJ, Hylands PJ, Gibbons S. Antimicrobial, resistance-modifying effects, antioxidant and free radical scavenging activities of Mezoneuron benthamianum Baill., Securinega virosa Roxb. &Wlld. and Microglossa pyrifolia Lam. Phytother Res. 2006;20(1):41-5. https://doi.org/10.1002/ptr.1799 PMid:16397919
- Tegos G, Stermitz FR, Lomovskaya O, Lewis K. Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob Agents Chemother. 2002;46(10):3133-41. https://doi.org/10.1128/AAC.46.10.3133-3141.2002 PMid:12234835
- Morel C, Stermitz FR, Tegos G, Lewis K. Isoflavones as potentiators of antibacterial activity. J Agric Food Chem. 2003;51(19):5677-9. https://doi.org/10.1021/jf0302714 PMid:12952418
- Marquez B, Neuville L, Moreau NJ, Genet JP, dos Santos AF, Caño de Andrade MC, et al. Multidrug resistance reversal agent from Jatropha elliptica. Phytochemistry. 2005;66(15):1804-11. https://doi.org/10.1016/j.phytochem.2005.06.008 PMid:16051285
- Pereda-Miranda R, Kaatz GW, Gibbons S. Polyacylated oligosaccharides from medicinal Mexican morning glory species as antibacterials and inhibitors of multidrug resistance in Staphylococcus aureus. J Nat Prod. 2006;69(3):406-9. https://doi.org/10.1021/np050227d PMid:16562846
- Rosato A, Vitali C, De Laurentis N, Armenise D, Antonietta Milillo M. Antibacterial effect of some essential oils administered alone or in combination with Norfloxacin. Phytomedicine. 2007;14(11):727-32. https://doi.org/10.1016/j.phymed.2007.01.005 PMid:17303397
- Coutinho HD, Falcão-Silva VS, Siqueira-Júnior JP, Costa JG. Use of aromatherapy associated with antibiotictherapy: Modulation of the antibiotic activity by the essential oil of Zanthoxylum articulatum using gaseous contact. J Essential Oil Bearing Plants. 2010;13:670-5.
- Cirino IC, Menezes-Silva SM, Silva HT, de Souza EL, Siqueira-Júnior JP. The Essential oil from Origanum vulgare l. and its individual constituents carvacrol and thymol enhance the effect of tetracycline against Staphylococcus aureus. Chemotherapy. 2014;60(5-6):290-3. https://doi.org/10.1159/000381175 PMid:25999020
- Chovanová R, Mezovská J, Vaverková Š, Mikulášová M. The inhibition the Tet(K) efflux pump of tetracycline resistant Staphylococcus epidermidis by essential oils from three Salvia species. Lett Appl Microbiol. 2015;61(1):58-62. https://doi.org/10.1111/lam.12424 PMid:25846244
- Medeiros Barreto H, Cerqueira Fontinele F, Pereira de Oliveira A, Arcanjo DD, Cavalcanti Dos Santos BH, de Abreu AP, et al. Phytochemical prospection and modulation of antibiotic activity in vitro by Lippia origanoides H.B.K. in methicillin resistant Staphylococcus aureus. Biomed Res Int. 2014;2014:305610. https://doi.org/10.1155/2014/305610 PMid:24683545
- Sung WS, Lee DG. The combination effect of Korean red ginseng saponins with kanamycin and cefotaxime against methicillin-resistant Staphylococcus aureus. Biol Pharm Bull. 2008;31(8):1614-7. https://doi.org/10.1248/bpb.31.1614 PMid:18670099
- Wang CM, Chen HT, Wu ZY, Jhan YL, Shyu CL, Chou CH. Antibacterial and synergistic activity of pentacyclic triterpenoids isolated from Alstonia scholaris. Molecules. 2016;21(2):139. https://doi.org/10.3390/molecules21020139 PMid:26821000
- Basri DF, Sandra V. Synergistic interaction of methanol extract from Canarium odontophyllum Miq. leaf in combination with oxacillin against methicillin-resistant Staphylococcus aureus (MRSA) ATCC 33591. Int J Microbiol. 2016;2016:5249534. https://doi.org/10.1155/2016/5249534 PMid:27006659
- Teethaisong Y, Autarkool N, Sirichaiwetchakoon K, Krubphachaya P, Kupittayanant S, Eumkeb G. Synergistic activity and mechanism of action of Stephania suberosa Forman extract and ampicillin combination against ampicillin-resistant Staphylococcus aureus. J Biomed Sci. 2014;21(1):90. https://doi.org/10.1186/s12929-014-0090-2 PMid:25208614
- Wang J, Guo J, Wu S, Feng H, Sun S, Pan J, et al. Synergistic effects of nanosecond pulsed electric fields combined with low concentration of gemcitabine on human oral squamous cell carcinoma in vitro. PLoS One. 2012;7(8):e43213. https://doi.org/10.1371/journal.pone.0043213 PMid:22927951
- Santiago C, Pang EL, Lim KH, Loh HS, Ting KN. Inhibition of penicillin-binding protein 2a (PBP2a) in methicillin resistant Staphylococcus aureus (MRSA) by combination of ampicillin and a bioactive fraction from Duabanga grandiflora. BMC Complement Altern Med. 2015;15:178. https://doi.org/10.1186/s12906-015-0699-z PMid:26060128
- Santiago C, Pang EL, Lim KH, Loh HS, Ting KN. Reversal of ampicillin resistance in MRSA via inhibition of penicillin-binding protein 2a by Acalypha wilkesiana. Biomed Res Int. 2014;2014:965348. https://doi.org/10.1155/2014/965348 PMid:25101303
- Santiago C, Lim KH, Loh HS, Ting KN. Prevention of cell-surface attachment and reduction of penicillin-binding protein 2a (PBP2a) level in methicillin-resistant Staphylococcus aureus biofilms by Acalypha wilkesiana. BMC Complement Altern Med. 2015;15:79. https://doi.org/10.1186/s12906-015-0615-6 PMid:25880167
- Kuok CF, Hoi SO, Hoi CF, Chan CH, Fong IH, Ngok CK, et al. Synergistic antibacterial effects of herbal extracts and antibiotics on methicillin-resistant Staphylococcus aureus: A computational and experimental study. Exp Biol Med (Maywood). 2017;242(7):731-43. https://doi.org/10.1177/1535370216689828 PMid:28118725
- Yurchyshyn O, Rusko H, Kutsyk R. Synergistic effects of ethanol medicinal plant extracts with erythromycin against skin strains of staphylococci with inducible phenotype of MLS-resistance. Ann Mechnikovs Inst. 2017;2017(3):71-9.
- Liu IX, Durham DG, Richards RM. Baicalin synergy with beta-lactam antibiotics against methicillin-resistant Staphylococcus aureus and other beta-lactam-resistant strains of S. aureus. J Pharm Pharmacol. 2000;52(3):361-6. https://doi.org/10.1211/0022357001773922 PMid:10757427
- Aqil F, Khan MS, Owais M, Ahmad I. Effect of certain bioactive plant extracts on clinical isolates of beta-lactamase producing methicillin resistant Staphylococcus aureus. J Basic Microbiol. 2005;45(2):106-14. https://doi.org/10.1002/jobm.200410355 PMid:15812867
- Lee YS, Kang OH, Choi JG, Oh YC, Chae HS, Kim JH, et al. Synergistic effects of the combination of galangin with gentamicin against methicillin-resistant Staphylococcus aureus. J Microbiol. 2008;46(3):283-8. https://doi.org/10.1007/s12275-008-0012-7 PMid:18604497
- Cushnie TP, Lamb AJ. Assessment of the antibacterial activity of galangin against 4-quinolone resistant strains of Staphylococcus aureus. Phytomedicine. 2006;13(3):187-91. https://doi.org/10.1016/j.phymed.2004.07.003 PMid:16428027
- Frimodt-Møller N, Frølund Thomsen V. Interaction between beta-lactam antibiotics and gentamicin against Streptococcus pneumoniae in vitro and in vivo. Acta Pathol Microbiol Immunol Scand B. 1987;95(5):269-75. https://doi.org/10.1111/j.1699-0463.1987.tb03124.x PMid:3673584
- Tawfiq UA, Yusha’u M, Bashir M, Adamu S, Umar PH. Synergistic antibacterial effect of stem bark extracts of Faidherbia albida and Psidium guajava against methicillin resistant Staphylococcus aureus. Bayero J Pure Appl Sci. 2017;10:112-5.
- Adnan SN, Ibrahim N, Yaacob WA. Disruption of methicillin-resistant Staphylococcus aureus protein synthesis by tannins. Germs. 2017;7(4):186-92. https://doi.org/10.18683/germs.2017.1125 PMid:29264356
- Othman L, Sleiman A, Abdel-Massih RM. Antimicrobial Activity of polyphenols and alkaloids in Middle Eastern plants. Front Microbiol. 2019;10:911. https://doi.org/10.3389/fmicb.2019.00911 PMid:31156565
- Yarnell E, Abascal K. Herbal support for methicillin-resistant Staphylococcus aureus infections. Alternat Complement Ther. 2009;15:189-95. https://doi.org/10.1089/act.2009.15402
- Wang YF, Que HF, Wang YJ, Cui XJ. Chinese herbal medicines for treating skin and soft-tissue infections. Cochrane Database Syst Rev. 2014;2014(7):CD010619. https://doi.org/10.1002/14651858.CD010619.pub2 PMid:25061914
- Fallarero A, Hanski L, Vuorela P. How to translate a bioassay into a screening assay for natural products: General considerations and implementation of antimicrobial screens. Planta Med. 2014;80(14):1182-99. https://doi.org/10.1055/s-0034-1383061 PMid:25221978
- Hayes AJ, Markovic B. Toxicity of Australian essential oil Backhousia citriodora (Lemon myrtle). Part 1. Antimicrobial activity and in vitro cytotoxicity. Food Chem Toxicol. 2002;40(4):535-43. https://doi.org/10.1016/s0278-6915(01)00103-x PMid:11893412
- Hon KL, Ip M, Wong CK, Chan BCL, Leung PC, Leung TF. In vitro antimicrobial effects of a novel Pentaherbs concoction for atopic dermatitis. J Dermatolog Treat. 2018;29(3):235-7. https://doi.org/10.1080/09546634.2017.1395804 PMid:29098912
- Weckesser S, Engel K, Simon-Haarhaus B, Wittmer A, Pelz K, Schempp CM. Screening of plant extracts for antimicrobial activity against bacteria and yeasts with dermatological relevance. Phytomedicine. 2007;14(7-8):508-16. https://doi.org/10.1016/j.phymed.2006.12.013 PMid:17291738
- Tohidpour A, Sattari M, Omidbaigi R, Yadegar A, Nazemi J. Antibacterial effect of essential oils from two medicinal plants against Methicillin-resistant Staphylococcus aureus (MRSA). Phytomedicine. 2010;17(2):142-5. https://doi.org/10.1016/j.phymed.2009.05.007 PMid:19576738
- Nelson RR. In-vitro activities of five plant essential oils against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. J Antimicrob Chemother. 1997;40(2):305-6. https://doi.org/10.1093/jac/40.2.305 PMid:9302003
- Hamoud R, Sporer F, Reichling J, Wink M. Antimicrobial activity of a traditionally used complex essential oil distillate (Olbas((R)) Tropfen) in comparison to its individual essential oil ingredients. Phytomedicine. 2012;19:969-76. https://doi.org/10.1016/j.phymed.2012.05.014
- Christoph F, Kaulfers PM, Stahl-Biskup E. A comparative study of the in vitro antimicrobial activity of tea tree oils s.l. with special reference to the activity of beta-triketones. Planta Med. 2000;66(6):556-60. https://doi.org/10.1055/s-2000-8604 PMid:10985085
- de Rapper S, Kamatou G, Viljoen A, van Vuuren S. The in vitro antimicrobial activity of Lavandula angustifolia essential oil in combination with other aroma-therapeutic oils. Evid Based Complement Alternat Med. 2013;2013:852049. https://doi.org/10.1155/2013/852049 PMid:23737850
- Kirmizibekmez H, Demirci B, Yeşilada E, Başer KH, Demirci F. Chemical composition and antimicrobial activity of the essential oils of Lavandula stoechas L. ssp. stoechas growing wild in Turkey. Nat Prod Commun. 2009;4(7):1001-6.
- Barbosa LN, Probst IS, Andrade BF, Alves FC, Albano M, da Cunha Mde L, et al. In vitro antibacterial and chemical properties of essential oils including native plants from Brazil against pathogenic and resistant bacteria. J Oleo Sci. 2015;64:289-98. https://doi.org/10.5650/jos.ess14209
- LaPlante KL. In vitro activity of lysostaphin, mupirocin, and tea tree oil against clinical methicillin-resistant Staphylococcus aureus. Diagn Microbiol Infect Dis. 2007;57(4):413-8. https://doi.org/10.1016/j.diagmicrobio.2006.09.007 PMid:17141452
- McMahon MA, Tunney MM, Moore JE, Blair IS, Gilpin DF, McDowell DA. Changes in antibiotic susceptibility in staphylococci habituated to sub-lethal concentrations of tea tree oil (Melaleuca alternifolia). Lett Appl Microbiol. 2008;47(4):263-8. https://doi.org/10.1111/j.1472-765X.2008.02420.x PMid:18778374
- Carson CF, Hammer KA, Riley TV. Broth micro-dilution method for determining the susceptibility of Escherichia coli and Staphylococcus aureus to the essential oil of Melaleuca alternifolia (tea tree oil). Microbios. 1995;82(332):181-5.
- Jiang Y, Wu N, Fu YJ, Wang W, Luo M, Zhao CJ, et al. Chemical composition and antimicrobial activity of the essential oil of Rosemary. Environ Toxicol Pharmacol. 2011;32:63-8. https://doi.org/10.1016/j.etap.2011.03.011
- Chen J, Tang C, Zhang R, Ye S, Zhao Z, Huang Y, et al. Metabolomics analysis to evaluate the antibacterial activity of the essential oil from the leaves of Cinnamomum camphora (Linn.) Presl. J Ethnopharmacol. 2020;253:112652. https://doi.org/10.1016/j.jep.2020.112652 PMid:32035880
- Jaradat N, Al-Maharik N. Fingerprinting, antimicrobial, antioxidant, anticancer, cyclooxygenase and metabolic enzymes inhibitory characteristic evaluations of Stachys viticina Boiss. Essential oil. Molecules. 2019;24(21):3880. https://doi.org/10.3390/molecules24213880 PMid:31661884
- Ramírez-Rueda RY, Marinho J, Salvador MJ. Bioguided identification of antimicrobial compounds from Chrysopogon zizaniodes (L.) Roberty root essential oil. Future Microbiol. 2019;14:1179-89. https://doi.org/10.2217/fmb-2019-0167 PMid:31625440
- Sakagami Y, Iinuma M, Piyasena KG, Dharmaratne HR. Antibacterial activity of alpha-mangostin against vancomycin resistant Enterococci (VRE) and synergism with antibiotics. Phytomedicine. 2005;12(3):203-8. https://doi.org/10.1016/j.phymed.2003.09.012 PMid:15830842
- Zuo GY, Li Y, Wang T, Han J, Wang GC, Zhang YL, et al. Synergistic antibacterial and antibiotic effects of bisbenzylisoquinoline alkaloids on clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). Molecules. 2011;16(12):9819-26. https://doi.org/10.3390/molecules16129819 PMid:22117171
- Shimizu M, Shiota S, Mizushima T, Ito H, Hatano T, Yoshida T, et al. Marked potentiation of activity of beta-lactams against methicillin-resistant Staphylococcus aureus by corilagin. Antimicrob Agents Chemother. 2001;45:3198-201. https://doi.org/10.1128/AAC.45.11.3198-3201.2001
- Shiota S, Shimizu M, Sugiyama J, Morita Y, Mizushima T, Tsuchiya T. Mechanisms of action of corilagin and tellimagrandin I that remarkably potentiate the activity of beta-lactams against methicillin-resistant Staphylococcus aureus. Microbiol Immunol. 2004;48(1):67-73. https://doi.org/10.1111/j.1348-0421.2004.tb03489.x PMid:14734860
- Abreu AC, Coqueiro A, Sultan AR, Lemmens N, Kim HK, Verpoorte R, et al. Looking to nature for a new concept in antimicrobial treatments: Isoflavonoids from Cytisus striatus as antibiotic adjuvants against MRSA. Sci Rep. 2017;7(1):3777. https://doi.org/10.1038/s41598-017-03716-7 PMid:28630440
- Smith E, Williamson E, Zloh M, Gibbons S. Isopimaric acid from Pinus nigra shows activity against multidrug-resistant and EMRSA strains of Staphylococcus aureus. Phytother Res. 2005;19(6):538-42. https://doi.org/10.1002/ptr.1711 PMid:16114093
- Braga LC, Leite AA, Xavier KG, Takahashi JA, Bemquerer MP, Chartone-Souza E, et al. Synergic interaction between pomegranate extract and antibiotics against Staphylococcus aureus. Can J Microbiol. 2005;51(7):541-7. https://doi.org/10.1139/w05-022 PMid:16175202
- Sakagami Y, Mimura M, Kajimura K, Yokoyama H, Linuma M, Tanaka T, et al. Anti-MRSA activity of sophoraflavanone G and synergism with other antibacterial agents. Lett Appl Microbiol. 1998;27(2):98-100. https://doi.org/10.1046/j.1472-765x.1998.00386.x PMid:9750330