References
- Briseghella, L., Majorana, C.E., Pellegrino, C. (1998). Dynamic stability of elastic structures: A finite element approach. Computers & Structures, 69, 11–25. https://doi.org/10.1016/S0045-7949(98)00084-4
- Czerwiński, A., Łuczko, J. (2018). Non-planar vibrations of slightly curved pipes conveying fluid in simple and combination parametric resonances. Journal of Sound and Vibration, 413, 270–290.
- Czerwiński, A., Łuczko, J. (2021). Nonlinear vibrations of planar curved pipes conveying fluid, Journal of Sound and Vibration, 501, 116054. https://doi.org/10.1016/j.jsv.2021.116054
- Demšić, M., Uroš, M., Lazarević, A.J., Lazarević, D. (2019). Resonance regions due to interaction of forced and parametric vibration of a parabolic cable. Journal of Sound and Vibration, 447, 78–104. https://doi.org/10.1016/j.jsv.2019.01.036
- Farokhi, H., Ghayesh, M.H. (2018). Supercritical nonlinear parametric dynamics of Timoshenko microbeams. Communications in Nonlinear Science and Numerical Simulation, 59, 592–605. https://doi.org/10.1016/j.cnsns.2017.11.033
- Ghayesh, M.H. (2012). Subharmonic dynamics of an axially accelerating beam. Archive of Applied Mechanics, 82(9), 1169–1181. https://doi.org/10.1007/s00419-012-0609-5
- Gonzalez-Buelga, A., Neild, S.A., Wagg, D.J., Macdonald, J.H.G. (2008). Modal stability of inclined cables subjected to vertical support excitation. Journal of Sound and Vibration, 318(3), 565–579. https://doi.org/10.1016/j.jsv.2008.04.031
- Huang, J.L., Su, R.K.L., Lee, Y.Y., Chen, S.H. (2011). Nonlinear vibration of a curved beam under uniform base harmonic excitation with quadratic and cubic nonlinearities. Journal of Sound and Vibration, 330(21), 5151– –5164. https://doi.org/10.1016/j.jsv.2011.05.023
- Huang, Y., Liu, A., Pi, Y., Lu, H., Gao, W. (2017). Assessment of lateral dynamic instability of columns under an arbitrary periodic axial load owing to parametric resonance. Journal of Sound and Vibration, 395, 272–293. https://doi.org/10.1016/j.jsv.2017.02.031
- Hwang, S.J., Perkins, N.C. (1994). High Speed Stability of Coupled Band/Wheel Systems: Theory and Experiment. Journal of Sound and Vibration, 169(4), 459–483. https://doi.org/10.1006/jsvi.1994.1029
- Ji, J.C., Hansen, C.H. (2000). Non-linear response of a post-buckled beam subjected to a harmonic axial excitation. Journal of Sound and Vibration, 237(2), 303–318. https://doi.org/10.1006/jsvi.2000.3028
- Lee, Y.Y., Poon, W.Y., Ng, C.F. (2006). Anti-symmetric mode vibration of a curved beam subject to autoparametric excitation. Journal of Sound and Vibration, 290(1–2), 48–64. https://doi.org/10.1016/j.jsv.2005.03.009
- Li, Q., Liu, W., Zhang, Z., Yue, Z. (2018). Parametric resonance of pipes with soft and hard segments conveying pulsating fluids. International Journal of Structural Stability and Dynamics, 18(10), 1850119. https://doi.org/10.1142/s0219455418501195
- Li, Y., Shen, C., Que, Z. (2024). Vector form intrinsic finite element analysis for nonlinear parametric resonances of planar beam structures. Journal of Sound and Vibration, 584, 118438. https://doi.org/10.1016/j.jsv.2024.118438
- Liu, A., Lu, H., Fu, J., Pi, Y.L., Huang, Y., Li, J., Ma, Y. (2016). Analytical and experimental studies on out-of-plane dynamic instability of shallow circular arch based on parametric resonance. Nonlinear Dynamics, 87(1), 677–694. https://doi.org/10.1007/s11071-016-3068-7
- Kreider, W., Nayfeh, A. (1996). Experimental investigation of singlemode responses in a fixed-fixed buckled beam. In: Dynamics Specialists Conference (pp. 353–362). Salt Lake City, UT. https://doi.org/10.2514/6.1996-1247
- Malookani, R.A., van Horssen, W.T. (2016). On Parametric Stability of a Nonconstant Axially Moving String Near Resonances. Journal of Vibration and Acoustics, 139(1), 011005. https://doi.org/10.1115/1.4034628
- Nagai, K., Maruyama, S., Sakaimoto, K., Yamaguchi, T. (2007). Experiments on chaotic vibrations of a post-buckledbeam with an axial elastic constraint. Journal of Sound and Vibration, 304(3–5), 541–555. https://doi.org/10.1016/j.jsv.2007.03.034
- Panda, L.N., Kar, R.C. (2008). Nonlinear dynamics of a pipe conveying pulsating fluid with combination, principal parametric and internal resonances. Journal of Sound and Vibration, 309, 375–406. https://doi.org/10.1016/j.jsv.2007.05.023
- Qing, J., Zhou, S., Wu, J., Shao, M., Tang, J. (2024). Parametric resonance of an axially accelerating viscoelastic membrane with a fractional model. Communications in Nonlinear Science and Numerical Simulation, 130, 107691. https://doi.org/10.1016/j.cnsns.2023.107691
- Semler, C. (1996). Nonlinear analysis of the parametric resonances of a planar fluid-conveying cantilevered pipe. Journal of Fluids and Structures, 10(7), 787–825. https://doi.org/10.1006/jfls.1996.0053
- Sahoo, B., Panda, L.N., Pohit, G. (2016). Combination, principal parametric and internal resonances of an accelerating beam under two frequency parametric excitation. International Journal of Non-Linear Mechanics, 78, 35–44. https://doi.org/10.1016/j.ijnonlinmec.2015.09.017
- Sochacki, W. (2008). The dynamic stability of a simply supported beam with additional discrete elements. Journal of Sound and Vibration, 314(1–2), 180–193. https://doi.org/10.1016/j.jsv.2007.12.037
- Wang, Y., Zhu, W. (2022). Supercritical nonlinear transverse vibration of a hyperelastic beam under harmonic axial loading. Communications in Nonlinear Science and Numerical Simulation, 112, 106536. https://doi.org/10.1016/j.cnsns.2022.106536
- Wei, M.H., Lin, K., Jin, L., Zou, D.J. (2016). Nonlinear dynamics of a cable-stayed beam driven by sub-harmonic and principal parametric resonance. International Journal of Mechanical Sciences, 110, 78–93. https://doi.org/10.1016/j.ijmecsci.2016.03.007
- Xie, W.D., Gao, X.F., Xu, W.H. (2020). Stability and nonlinear vibrations of a flexible pipe parametrically excited by an internal varying flow density. Acta Mechanica Sinica, 36(1), 206–219. https://doi.org/10.1007/s10409-019-00910-w
- Zhai, Y.J., Ma, Z.S., Ding, Q., Wang, X.P., Wang, T. (2022). Nonlinear transverse vibrations of a slightly curved beam with hinged–hinged boundaries subject to axial loads. Archive of Applied Mechanics, 92(7), 2081–2094. https://doi.org/10.1007/s00419-022-02162-w
- Zhang, L.N., Li, F.C., Yu, X., Cui, P.F., Wang, X.Y. (2016). Experimental Research on 2 : 1 Parametric Vibration of Stay Cable Model under Support Excitation. Advances in Materials Science and Engineering, 1–9. https://doi.org/10.1155/2016/9804159
- Zhang, C.Y., Zhu, C.M., Lin, Z.Q., & Wu, T. X. (2004). Theoretical and Experimental Study on the Parametrically Excited Vibration of Mass-Loaded String. Nonlinear Dynamics, 37(1), 1–18. https://doi.org/10.1023/b:nody.0000040034.86726.f5