Have a personal or library account? Click to login
Study on defect influence on elastic stifnesses and strength of auxetic cellular materials Cover

Study on defect influence on elastic stifnesses and strength of auxetic cellular materials

Open Access
|Jan 2026

References

  1. Ajdari, A., Nayeb-Hashemi, H., Canavan, P., Warner, G. (2008). Effect of defects on elastic–plastic behavior of cellular materials. Materials Science and Engineering, A, 487, 558–567.
  2. Caneiro, V.H., Meireles, J., Puga, H. (2013). Auxetic Materials–A Review. Materials Science 31, 4, 561–571. https://doi.org/10.37705/TechTrans/e2026001
  3. Chen, C., Lu, T., Fleck, N. (1999). Effect of imperfections on the yielding of two dimensional foams. Journal of Mechanics and Physics of Solids 11, 2235–2272.
  4. Chen, D.H., Masuda, K. (2018). Effects of honeycomb geometry on stress concentration due to defects. Composite Structures 188, 55–63.
  5. Chen, D.H., Ozaki, S. (2009). Stress concentration due to defects in a honeycomb structure. Composite Structures 89, 52–59.
  6. Cui, X.D., Zhang, Y.H., Zhao, H., Lu, T.J. Fang, D.N. (2010). Stress concentration in two-dimensional lattices with imperfections. Acta Mechanica 216, 1–4, 105–122.
  7. Deshpande, V.S., Ashby, M.F., Fleck, N.A. (2001). Foam topology: bending versus stretching dominated architectures. Acta Materialia 49, 6, 1035–1040.
  8. Drugan, W., Willis, J. (1996). A micromechanics-based nonlocal constitutive equations and estimates of repre-sentative volume element size for elastic composites. Journal of Mechanics and Physics of Solids 44, 497–524.
  9. Du, X., Ostoja-Starzewski, M. (2006). On the scaling from statistical to representative volume element in thermoelasticity of random materials. Networks and Heterogeneous Media, American Institute of Mathematical Sciences 1, 2, 259–274.
  10. Evans, A.G., Hutchinson, J.W., Ashby, M.F. (1998). Multifunctionality of cellular metal systems. Progress in Material Science 43, 171–221.
  11. Fleck, N.A., Deshpande, V.S. (2004). The resistance of clamped sandwich beams to shock loading. Journal of Applied Mechanics – Transactions of ASME 71, 3, 386–401.
  12. Gaydachuk, A.V., Slivinskiy, M.B., Golovanevskiy, V.A. (2006). Technological Defects Classification System for Sandwiches Honeycomb Composite Materials Structures. Materials Forum, 30.
  13. Gibson, L.J., Ashby, M.F. (1997). Cellular Solids: Structure and Properties. Cambridge: Cambridge University Press.
  14. Gitman, I., Lambertus, H., Valls, S. (2004). The concept of Representative Volume for elastic, hardening and softening materials, Proceedings of XXXII International Summmer School-Conference Advanced Problems in Mechanics, APM, Saint Petersburg, Russia.
  15. Gu, S., Lu, T.J., Evans, A.G. (2001). On the design of 2D cellular metals for combined heat dissipation and structural load capacity. International Journal for Heat and Mass Transfer 44, 2163–2175.
  16. Guo, X.E., Gibson, L.J. (1999). Behavior of intact and damaged honeycombs: a finite element study. International Journal of Mechanical Sciences 41, 85–105.
  17. Hayes, A.M., Wang, A.J., Dempsey, B.M., McDowell, D.L. (2004). Mechanics of linear cellular alloys. Mechanics of Materials 36, 691–713.
  18. Janus-Michalska, M. (2009). Micromechanical Model of Auxetic Cellular Materials. Journal of Theoretical and Applied Mechanics 4, 47, 5–22.
  19. Jiang, R., Alzebdeh, K., Jasiuk, I., Ostoja-Starzewski, M. (2001). Scale and boundary conditions effects in elastic properties of random composites. Acta Mechanica 148, 63–78.
  20. Jin, R., Chen, W., Sudjianto, A. (2005). An efficient algorithm for constructing optimal design of computer experiments. Journal of Statistical Planning and Inference 134, 268–287.
  21. Kanit, T., Forest, S., Galliet, I., Mounoury, V., Jeulin, D. (2003). Determination of the size of the representative element for random composites: statistical and numerical approach. International Journal of Solids and Structures 40, 3647–3679.
  22. Li, K., Gao, X.L., Subhash, G. (2005). Effects of cell shape and cell wall thickness variations on the elastic properties of two-dimensional cellular solids. International Journal of Solids and Structures 42, 1777–1795.
  23. Lu, T.J., He, D.P., Chen, C.Q., Zhao, C.Y., Fang, D.N., Wang, X.L. (2006). The multifunctionality of ultra-light porous metals and their applications. Advances in Mechanics 4, 517–535.
  24. Mukhopadhyay, T., Adhikari, S. (2016). Equivalent in-plane elastic properties of irregular honeycombs: An analytical approach. International Journal of Solids and Structures 91, 169–184.
  25. Nemat-Naser, S., Hori, M. (1999). Micromechanics, 2nd edition Elsevier.
  26. Ostoja-Starzewski, M. (1998). Random field models of heterogeneous materials. International Journal for Solids and Structures 35, 19, 2429–2455.
  27. Ostoja-Starzewski, M. (1999). Scale effects in materials with random distributions of needles and cracks. Mechabics of Materials 31, 883–893.
  28. Ostoja-Starzewski, M. (2002). Microstructural randomness versus representative volume element in thermomechanics. Transactions of the ASME 69, 25–35.
  29. Ostoja-Starzewski, M. (1998). Random field models of heterogeneous materials. International Journal for Solids and Structures 35, 19, 2429–2455. Prawoto, Y. (2012). Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio. Computational Materials Science 58, 140–153.
  30. Sena, M., Ostoja-Starzewski, M., Costa, L. (2013). Stiffness tensor random fields through upscaling of planar random materials. Probabilistic Engineering Mechanics 34, 131–156.
  31. Symons, D.D., Fleck, N.A. (2008). The imperfection sensitivity of isotropic two-dimensional elastic lattices. Journal of Applied Mechanics – Trans. ASME 75, 051011–1–051011-8.
  32. Valavala P., Odegard G., Aifantis E. (2009). Influence of representative volume element size on predicted elastic properties of polymer materials. Modelling and Simulation in Materials Science and Engineering 17, 1–15.
  33. Vernerey F. (2006). Multi-scale continuum theory for microstructured materials. Ph.D. Dissertation, Department of Civil and Environmental Engineering, Northwestern University Evanston.
  34. Wadley H.N., (2006). Multifunctional periodic cellular metals. Philosophical Transactions of the Royal Society A 364, 31–68.
  35. Wallach J.C., Gibson L.J. (2001). Defect sensitivity of 3D truss material. Scripta Materialia 45, 639–644.
  36. Wang A. J., McDowell D. L. (2003). Effects of defects on in-plane properties of periodic metal honeycombs. International Journal of Mechanical Sciences 45, 1799–1813.
  37. Wang A.J., McDowell D.L. (2004). In-plane stiffness and yield strength of periodic metal honeycombs. Journal of Engineering of Materials and Technology 126, 137–156.
  38. Wang B., Shi Y., Li R., Chen V., Mo Y. (2015). 2D hierarchical lattices’ imperfection sensitivity to missing bars defect. Theoretical and Applied Mechanics Letters 5, 141–145.
  39. Xiangdong D., Ostoja-Starzewski M. (2006). On the scaling from statistical to representative volume element in thermoelasticity of random materials. Networks and Heterogeneous Media 1, 2, 259–274.
  40. Yiang W., Li Z.M., Xie B.H., Ming-Bo Yang M.B. (2004). Review on auxetic materials, Journal of Materials Science 39, 3269–3279.
  41. Yin X., Chen W., To A., McVeigh C., Liu W. (2008). Statistical volume element method for predicting microstructure-constitutive property relations. Computer Methods in Applied Mechanics and Engineering 197, 3516–3529.
  42. Zhu K., Cui X., Fang D. (2012). The reinforcement and defect interaction of two-dimensional lattice materials with imperfections. International Journal of Solids and Structures 49, 1908–1917.
  43. Zhu, H.X., Hobdell, J.R., Windle, A.H. (2001). Effects of cell irregularity on the elastic properties of 2D Voronoi honeycombs. Journal of Mechanics and Physics of Solids 49, 857–870.
DOI: https://doi.org/10.37705/TechTrans/e2026001 | Journal eISSN: 2353-737X | Journal ISSN: 0011-4561
Language: English
Submitted on: Oct 23, 2025
|
Accepted on: Dec 3, 2025
|
Published on: Jan 13, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2026 Małgorzata Janus, Marian Marschalko, published by Cracow University of Technology
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.

Volume 123 (2026): Issue 1 (January 2026)