References
- Aakko-Saksa, P., Järvinen, A., Rönkkö, T., Karjalainen, P. at all (2025). Transport Sectors’ Real-World Emissions: From Gaseous Precursors to Secondary Aerosol Formation. In Urban Air. C. McNally et al. (Eds.): TRA Conference 2024, LNMOB (pp. 153–159). https://doi.org/10.1007/978-3-031-95284-5_22.
- ACEA_cars_fact_sheet_Feb2025. Retrevied from: www.acea.auto (access: 31.07.2025).
- Bielaczyc, P., Woodburn, J., Joshi, A. (2021). World-wide trends in powertrain system development in light of emissions legislation, fuels, lubricants, and test methods. Combustion Engines 184(1): 57–71. https://doi.org/10.19206/CE-134785.
- Bielaczyc, P., and Woodburn, J. (2022). On-Road Emissions and Fuel Consumption Testing of Heavy-Duty Vehicles via PEMS – Comparisons of Various Performance Metrics. SAE Technical Paper 2022-01-0571. https://doi.org/10.4271/2022-01-0571
- Bielaczyc, P., Honkisz, W., Woodburn, J., Aakko-Saksaa, P., Järvinen, A et. al (2024). PAREMPI – a Comprehensive Assessment of Real-World Particulate Emissions from the Transport Sector, with a Focus on Secondary Aerosol. 24PFL-0537. In SAE WCX Congress, Detroit, USA, April 16–18, 2024. https://doi.org/10.13140/RG.2.2.22268.76166.
- Bielaczyc, P. (2025). An analysis of results of Real-World Particulate Emissions from the Road, Aviation and Marine Transport Sector, with a Focus on Secondary Aerosol and Environmental Hazards. In WMC25-P-PSM-011, FISITA WMC – World Mobility Conference – Propulsion system, Barcelona, Spain 3–5 June.
- Carbone, S., Timonen, H. J., Rostedt, A., Happonen, M., Rönkkö, T., Keskinen, J., Ristimaki, J., Korpi, H., Artaxo, P., Canagaratna, M., Worsnop, D., Canonaco, F., Prévôt, A.S.H., Hillamo, R. and Saarikoski, S. (2019). Distinguishing fuel and lubricating oil combustion products in diesel engine exhaust particles. Aerosol Science and Technology 53, 594–607, https://doi.org/10.1080/02786826.2019.1584389
- Cervena, T., Vojtisek-Lom, M., Pechout, M., Honkova, K et. al (2025). Toxicity of Transport Emissions: Findings from the PAREMPI Light-Duty Campaign. EAC 2025 European Aerosol Conference, LECCE, Italy, 31 August––5 September.
- Giechaskiel, B., Melas, A., Martini, G., Dilara, P. (2021). Overview of Vehicle Exhaust Particle Number Regulations. Processes 2021 9, 2216, https://doi.org/10.3390/pr9122216.
- Giechaskiel, B., Ferrarese, C., Grigoratos, T., & Franco, V. (2025). Wear of Passenger Car C1 Tyres Under Regulatory On-Road Testing Conditions. Vehicles 7(3): 91. https://doi.org/10.3390/vehicles7030091
- Giechaskiel, B., Grigoratos, T., Dilara, P., and Franco, V. (2024). Environmental and Health Benefits of Reducing Tyre Wear Emissions in Preparation for the New Euro 7 Standard. Sustainability 16(24): 10919. https://doi.org/10.3390/su162410919
- Grigoratos, T., Mamakos, A., Arndt, M., Lugovyy, D., Anderson, R., Hafenmayer, C., Moisio, M., Vanhanen, J., Frazee, R., Agudelo, C., et. al (2023). Characterization of Particle Number Setups for Measuring Brake Particle Emissions and Comparison with Exhaust Setups. Atmosphere 14, 103. https://doi.org/10.3390/atmos14010103
- Grigoratos, T., Mamakos, A., Vedula, R., Arndt, M., Lugovyy, D., Hafenmayer, C., Moisio, M., Agudelo, C., Giechaskiel, B. (2023). Characterization of Laboratory Particulate Matter (PM) Mass Setups for Brake Emission Measurements. Atmosphere 2023 14: 516, https://doi.org/10.3390/atmos14030516
- Junninen, H., Ehn, M., Petäjä, T., Luosujärvi, L. et all (2010). A high-resolution mass spectrometer to measure atmospheric ion composition, Atmos. Meas. Tech. 3: 1039–1053, https://doi.org/10.5194/amt-3-1039-2010
- Kang, E., Root, M.J., Toohey, D. W., and Brune, W.H. (2007): Introducing the concept of Potential Aerosol Mass (PAM), Atmos. Chem. Phys. 18.
- Kittelson, D., Khalek, I., McDonald, J., Stevens, J., Giannelli, R. ( 2022): Particle emissions from mobile sources: discussion of ultrafine particle emissions and definition. J. Aerosol Sci. 159, 105881. https://doi.org/10.1016/j.jaerosci.2021.105881
- Krechmer, J., Lopez-Hilfiker, F., Koss, A., Hutterli, M., Stoermer, C., Deming, B., Kimmel, J., Warneke, C., Holzinger, R., Jayne, J., Worsnop, D., Fuhrer, K., Gonin, M., de Gouw J. (2018). Evaluation of a New Reagent-Ion Source and Focusing Ion-Molecule Reactor for Use in Proton-Transfer-Reaction Mass Spectrometry. Anal. Chem. 90(20): 12011–12018. https://doi.org/10.1021/acs.analchem.8b02641.
- Kuittinen, N., McCaffery, C., Peng, W., Zimmerman, S., Roth, P., Simonen, P., Karjalainen, P., Keskinen, J., Cocker, D. R., Durbin, T. D., Rönkkö, T., Bahreini, R., and Karavalakis, G. (2021). Effects of driving conditions on secondary aerosol formation from a GDI vehicle using an oxidation flow reactor. Environmental Pollution 282, 117069, https://doi.org/10.1016/j.envpol.2021.117069
- PAREMPI D2.2 Measurement results of emissions, secondary aerosol forming potential and methodology. Rönkkö, T. et al. 2025. PAREMPI, Public Reports. Retrevied from: https://parempi.eu/ (access: 10.09.2025).
- Rubino, L., Mayer, A., Czerwinski, J., Lutz, T. et al. (2023). HORIZON Europe Project AeroSolfd: GPF-Retrofit for Cleaner Urban Mobility. SAE Technical Paper 2023-24-0114, https://doi.org/10.4271/2023-24-0114
- Simonen, P., Saukko, E., Karjalainen, P., Timonen, H., Bloss, M. at all (2017) A new oxidation flow reactor for measuring secondary aerosol formation of rapidly changing emission sources. Atmos. Meas. Tech. 10: 1519–1537, https://doi.org/10.5194/amt-10-1519-2017
- Simon, L., Barreira, L., Kylämäki, K., Tommonen, H. et all (2025) From Real-Driving Emissions to Urban Air Quality: Composition of Aged PM from Modern Diesel, Gasoline, and CNG Fueled Cars and Plug-In Hybrid Electric Vehicles. Atmospheric Environment: X, https://doi.org/10.1016/j.aeaoa.2025.100375
- Timonen, H., Karjalainen, P., Saukko, E., Saarikoski, S., at all (2017): Influence of fuel ethanol content on primary emissions and secondary aerosol formation potential for a modern flex-fuel gasoline vehicle. Atmos. Chem. Phys. 17: 5311–5329, https://doi.org/10.5194/acp-17-5311-2017
- Thomas, A.E., Bauer, P.S., Dam, M., Perraud, V., Wingen, L.M. and Smith, J.N. (2024). Automotive braking is a source of highly charged aerosol particles, Proc. Natl. Acad. Sci. U.S.A. 121 (13) e2313897121. https://doi.org/10.1073/pnas.2313897121
- Vojtisek-Lom, M., Pechout, M., Macoun, D., Rameswaran, R. et al. (2020). Assessing Exhaust Toxicity with Biological Detector: Configuration of Portable Air-Liquid Interface Human Lung Cell Model Exposure System, Sampling Train and Test Conditions. SAE Int. J. Adv. & Curr. Prac. in Mobility 2(2): 520–534. https://doi.org/10.4271/2019-24-0050
- Vojtisek-Lom et al. (2025). Portable emissions toxicity system: Evaluating the toxicity of emissions or polluted air by exposure of cell cultures at air-liquid interface in a compact field-deployable setup. SCI Total Environ. https://doi:10.1016/j.scitotenv.2024.178010
- Wahlström, J., Söderberg, A., Olander, L., Olofsson, U., Jansson, A. (2009). Airborne wear particles from passenger car disc brakes: A comparison of measurements from field tests, a disc brake assembly test stand, and a pin--on-disc machine. Proceedings of the Institution of Mechanical Engineers, Part J. 224(2): 179–188. https://doi.org/10.1243/13506501JET633.
- Woodburn, J., Bielaczyc, P., and Giechaskiel, B. (2022), A Technical Overview of Particulate Exhaust Emissions in the Post-RDE Era. SAE Technical Paper 2022-01-1021, https://doi.org/10.4271/2022-01-1021