References
- Ghafoor, M.T., Rakhimova, N., & Shi, C. (2025). One part geopolymers: A comprehensive review of advances and key challenges. Journal of Building Engineering 111, 113112. https://doi.org/10.1016/j.jobe.2025.113112
- Chen, W., Zhu, H., Li, Y., Liu, F., Li, Q., Mao, Y., & Yang, A. (2025). Geopolymers prepared from industrial solid waste: Comprehensive properties and application prospects. Environmental Research 278, 121518. https://doi.org/10.1016/j.envres.2025.121518
- Feng, Z., Zhang, Z., Li, W., Hao, G., Xia, X., Li, P., & Zhu, K. (2025). Recent advances in tailings waste as geopolymers for construction: Current challenges and prospects. Minerals Engineering 230, 109439. https://doi.org/10.1016/j.mineng.2025.109439
- Iong, C., Dassekpo, J. M., Gyakari, F. N., Zha, X., Li, L., Li, Y., Wang, J., & Zhang, F. (2025). Effects of thermal conditioning and alkali molars on the properties changes of mesoporous fly ash geopolymers. Construction and Building Materials 471, 140676. https://doi.org/10.1016/j.conbuildmat.2025.140676
- Elgarahy, A. M., Maged, A., Eloffy, M., Zahran, M., Kharbish, S., Elwakeel, K.Z., & Bhatnagar, A. (2023). Geopolymers as sustainable eco-friendly materials: Classification, synthesis routes, and applications in wastewater treatment. Separation and Purification Technology 324, 124631. https://doi.org/10.1016/j.seppur.2023.124631
- Tian, Q., Bai, Y., Pan, Y., Chen, C., Yao, S., Sasaki, K., & Zhang, H. (2021). Application of geopolymer in stabilization/solidification of hazardous pollutants: A review. Molecules 27(14), 4570. https://doi.org/10.3390/molecules27144570
- Przybek, A., Romańska, P., Piątkowski, J., & Łach, M. (2024). Lightweight insulating geopolymer/phase-change materials applied using an innovative spray method. Applied Sciences 15(10), 5481. https://doi.org/10.3390/app15105481
- Bąk, A., Pławecka, K., Bazan, P., & Łach, M. (2023). Influence of the addition of phase change materials on thermal insulation properties of foamed geopolymer structures based on fly ash. Energy 278, 127624. https://doi.org/10.1016/j.energy.2023.127624
- Przybek, A., Łach, M., Bogucki, R., Ciemnicka, J., Prałat, K., Koper, A., Korniejenko, K., & Masłoń, A. (2024). Energy-efficient geopolymer composites containing phase-change materials—Comparison of different contents and types. Materials 17(19), 4712. https://doi.org/10.3390/ma17194712
- Marczyk, J., Przybek, A., Setlak, K., Bazan, P., & Łach, M. (2025). Energy-efficient insulating geopolymer foams with the addition of phase change materials. ACS Omega 10(3), 2488–2500. https://doi.org/10.1021/acsomega.4c06227
- Freire, A. L., Da Silva, A., Della Rocca, D. G., Da Silveira Salla, J., Castellã Pergher, S. B., Rodríguez-Castellón, E., José, H. J., & De Fátima Peralta Muniz Moreira, R. (2025). Synthesis and characterization of geopolymers based on phosphate mining tailings and its application for carbon dioxide and nitrogen adsorption. Ceramics International 51(7), 8396–8407. https://doi.org/10.1016/j.ceramint.2024.12.270
- Khoramzadeh, E., Mofarahi, M., & Lee, C.-H. (2019). Equilibrium adsorption study of CO2 and N2 on synthesized zeolites 13X, 4A, 5A, and Beta. Journal of Chemical & Engineering Data 64(12), 5648–5664. https://doi.org/10.1021/acs.jced.9b00690
- Harper, R. J., Stifel, G. R., & Anderson, R. B. (2011). Adsorption of gases on 4A synthetic zeolite. Canadian Journal of Chemistry 47(24), 4661–4670. https://doi.org/10.1139/v69-770
- Minelli, M., Papa, E., Medri, V., Miccio, F., Benito, P., Doghieri, F., & Landi, E. (2018). Characterization of novel geopolymer–zeolite composites as solid adsorbents for CO2 capture. Chemical Engineering Journal 341, 505–515. https://doi.org/10.1016/j.cej.2018.02.050
- Papa, E., Minelli, M., Marchioni, M. C., Landi, E., Miccio, F., Natali Murri, A., Benito, P., Vaccari, A., & Medri, V. (2023). Metakaolin-based geopolymer–zeolite NaA composites as CO2 adsorbents. Applied Clay Science 237, 106900. https://doi.org/10.1016/j.clay.2023.106900
- Zhou, X., Shi, S., Ding, B., Jia, H., Chen, P., Du, T., & Wang, Y. (2023). Optimization of preparation of NaA zeolite from fly ash for CO2 capture. Environmental Science and Pollution Research 30, 102803–102817. https://doi.org/10.1007/s11356-023-29648-6
- Kumar, S., Srivastava, R., & Koh, J. (2020). Utilization of zeolites as CO2 capturing agents: Advances and future perspectives. Journal of CO2 Utilization 41, 101251. https://doi.org/10.1016/j.jcou.2020.101251
- Schneider, M., Rodríguez-Castellón, E., Guerrero-Pérez, M. O., Hotza, D., & De Noni Junior, A., de Fátima Peralta Muniz Moreira, R. (2025). Hierarchically porous composites containing mining tailings-based geopolymer and zeolite 13X: Application for carbon dioxide sequestration. Adsorption 31, 21. https://doi.org/10.1007/s10450-024-00569-1
- Schneider, M., da Silva Costa, D. G., Freire, A. L., Rodríguez-Castellón, E., Guerrero-Pérez, M. O., Hotza, D., De Noni Junior, A., & Fátima Peralta Muniz Moreira, R. (2025). Comparative study on CO2 adsorption capacity of phosphate waste-based geopolymer and zeolite 13X for sustainable hydrogen purification. Water, Air, & Soil Pollution 236, 419. https://doi.org/10.1007/s11270-025-08003-0
- Łach, M., Pławecka, K., Bąk, A., Lichocka, K., Korniejenko, K., Cheng, A., & Lin, W. (2021). Determination of the influence of hydraulic additives on the foaming process and stability of the produced geopolymer foams. Materials 14(17), 5090. https://doi.org/10.3390/ma14175090
- ASTM C1784 (2020). Standard test method for using a heat flow meter apparatus for measuring thermal storage properties of phase change materials and products. West Conshohocken, PA: American Society for Testing and Materials.
- ASTM C518 (2021). Standard test method for steady-state thermal transmission properties by means of the heat flow meter apparatus. West Conshohocken, PA: American Society for Testing and Materials.
- ISO 8301 (1991). Thermal insulation–Determination of steady-state thermal resistance and related properties–Heat flow meter apparatus. London, UK: International Standards Organization.
- EN 12664 (2001). Thermal performance of building materials and products. Determination of thermal resistance by means of guarded hot plate and heat flow meter methods. Dry and moist products of medium and low thermal resistance. Brussels, Belgium: European Committee for Standardization.