Have a personal or library account? Click to login
Practical implications of hydrocarbon pollution in the assessment of geotechnical behaviour of cohesive soils Cover

Practical implications of hydrocarbon pollution in the assessment of geotechnical behaviour of cohesive soils

Open Access
|Dec 2025

References

  1. Anandarajah, A. (2003). Mechanism controlling permeability change in clays due to changes in pore fluids. Journal of Geotechnical and Geoenvironmental Engineering 129(2), 163–172. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:2(163)
  2. Aiban, S.A. (1998). The long-term environmental effects of the Gulf War. The effect of temperature on the engineering properties of oil-contaminated sands. Environmental International 24, 153–161. https://doi.org/10.1016/S0160-4120(97)00131-1
  3. Al-Sanad, H.A., Eid, W.K., & Ismael, N.F. (1995). Geotechnical properties of oilcontaminated Kuwaiti sand. Journal of Geotechnical Engineering 121(5), 407–412. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:5(407)
  4. ASTM D3080-04. (2004). Standard test method for direct shear test of soils under consolidated drained conditions. ASTM International.
  5. Chen, F.H. (1975). Foundations on expansive soils. Elsevier.
  6. Chmielewski, J., Żeber-Dzikowska, I., Pawlas, K., Nowak-Starz, G., ChojnowskaĆwiąkała, I., Dębska, A., Szpringer, M., Gworek, B., & Czarny-Działak, M. (2020). Substancje ropopochodne – zagrożenie dla środowiska i zdrowia w kontekście edukacji ekologicznej. Przemysł Chemiczny 99(6), 837–843. https://doi.org/10.15199/62.2020.6.1
  7. Czado, B., Korzeniowska-Rejmer, E., & Pietras, J.S. (2010). Analiza zmian nośności podłoża budowlanego w wyniku jego zanieczyszczenia substancjami ropopochodnymi na przykładzie gruntów piaszczystych. Górnictwo i Geoinżynieria 34(2), 165–171.
  8. Dobak, P. (1999). The role of the filtration factor in uniaxial consolidation tests of soils (in Polish). Kraków: Wydawnictwo IGSMiE.
  9. Dobak, P., & Gaszyński, J. (2015). Aspects of permeability and rheology in uniaxial consolidation, considering analysis of soil deformation progress and pore pressure dissipation. Architecture Civil Engineering Environment 7(4), 47–55.
  10. Dobak, P., Izdebska-Mucha, D., Stajszczak, P., Wójcik, E., Kiełbasiński, K., Gawriuczenkow, I., Szczepański, T., Zawrzykraj, P., & Bąkowska, A. (2022). Effects of hydrocarbon contamination on the engineering geological properties of Neogene clays and Pleistocene glacial tills from Central Poland. Acta Geologica Polonica 72(4), 529–555. https://doi.org/10.24425/agp.2022.142647
  11. Griffiths, D.V., & Lane, P.A. (1999). Slope stability analysis by finite elements. Geotechnique 49, 387–403.
  12. Head, K.H. (1992). Manual of soil laboratory testing. Vol. 1: Soil classification and compaction tests. London.
  13. IS 1498. (1970). Indian standard classification and identification of soils for general engineering purposes. New Delhi: BIS.
  14. Izdebska-Mucha, D., & Korzeniowska-Rejmer, E. (2010). Selected characteristics of clay soils polluted by petroleum substances in the context of their barrier properties. In: M. Datta, R.K. Srivastava, G.V. Ramana, & J.T. Shahu (Eds.), Proceedings of the 6th International Congress on Environmental Geotechnics, Vol. 1 (pp. 705–710). New Delhi:Tata McGraw-Hill Education.
  15. Izdebska-Mucha, D., Trzciński, J., & Klein, M. (2021). The effect of diesel fuel contamination on the particle size distribution and plasticity of muds from the area of Warsaw-Siekierki. Przegląd Geologiczny 69(12), 800–810.
  16. Izdebska-Mucha, D., Trzciński, J., Żbik, M., & Frost, R.L. (2011). Influence of hydrocarbon contamination on clay soil microstructure. Clay Mineral, 46, 47–58. https://doi.org/10.1180/claymin.2011.046.1.04
  17. Izdebska-Mucha, D., & Wójcik, E. (2014). Expansivity of Neogene clays and glacial tills from central Poland. Geological Quarterly 58(2), 281–290. https://doi.org/10.7306/gq.1151
  18. Karkush, M.O., & Jihad, A.G. (2020). Studying the geotechnical properties of clayey soil contaminated by kerosene. Key Engineering Materials 857, 383–393. https://doi.org/10.4028/www.scientific.net/KEM.857.383
  19. Karkush, M.O., & Kareem, Z.A. (2017). Investigation of the impacts of fuel oil on the geotechnical properties of cohesive soil. Engineering Journal 21, 127–137. https://doi.org/10.4186/ej.2017.21.4.127
  20. Kaya, A., & Fang, H.-Y. (2000). The effects of organic fluids on physicochemical parameters of fine-grained soils. Canadian Geotechnical Journal 37(4), 943–950. https://doi.org/10.1139/t00-033
  21. Kaya, A., & Fang, H. (2005). Experimental evidence of reduction in attractive and repulsive forces between clay particles permeated with organic liquids. Canadian Geotechnical Journal 42, 632–640. https://doi.org/10.1139/t04-112
  22. Kermani, M., & Ebadi, T. (2012). The effect of oil contamination on the geotechnical properties of fine-grained soils. Soil and Sediment Contamination: An International Journal 21, 655–671. https://doi.org/10.1080/15320383.2012.672486
  23. Khamehchiyan, M., Charkhabi, A.H., & Tajik, M. (2007). Effects of crude oil contamination on geotechnical properties of clayey and sandy soils. Engineering Geology 89(3–4), 220–229. https://doi.org/10.1016/j.enggeo.2006.10.009
  24. Khosravi, E., Ghasemzadeh, H., Sabour, M. R., & Yazdani, H. (2013). Geotechnical properties of gas oil-contaminated kaolinite. Engineering Geology 166, 11–16. https://doi.org/10.1016/j.enggeo.2013.08.004
  25. Korzeniowska-Rejmer, E. (2001). Wpływ zanieczyszczeń ropopochodnych na charakterystykę geotechniczną gruntów stanowiących podłoże budowlane. Inżynieria Morska i Geotechnika 2, 83–86.
  26. Korzeniowska-Rejmer, E., & Izdebska-Mucha, D. (2006). Ocena wpływu zanieczyszczeń ropopochodnych na uziarnienie i plastyczność gruntów spoistych. Inżynieria i Ochrona Środowiska 9(1), 89–103.
  27. Ling, S.Y., & Yong, L.C. (2013). Behavior of piles in palm biodiesel contaminated mining sand. International Journal of Environmental Science 3, 1822–1830.
  28. Merwe, D. H. van der. (1964). The prediction of heave from the plasticity index and percentage clay fraction of soils. Civil Engineer in South Africa 6, 103–106.
  29. Oluremi, J. R., & Osuolale, O. M. (2014). Oil contaminated soil as potential applicable material in civil engineering construction. Journal of Environment and Earth Science 4, 87–99.
  30. Onyelowe, K. C. (2015). Pure crude oil contamination on Amaoba lateritic soil. Electronic Journal of Geotechnical Engineering 20, 1129–1142.
  31. PKN-CEN ISO/TS 17892-4:2009. (2009). Badania geotechniczne – Badania laboratoryjne gruntów – Część 4: Oznaczanie składu granulometrycznego. PN-B-04481. (1988). Grunty budowlane. Badania próbek gruntu.
  32. PN-EN 1997-1:2008 (2008) Eurokod 7: Projektowanie geotechniczne – Część 1: Zasady ogólne.
  33. PN-EN ISO 14688-1:2018-05. (2018). Rozpoznanie i badania geotechniczne – Oznaczanie i klasyfikowanie gruntów – Część 1: Oznaczanie i opis.
  34. PN-EN ISO 17892-5:2017-06. (2017). Rozpoznanie i badania geotechniczne – Badania laboratoryjne gruntów – Część 5: Badanie edometryczne gruntów.
  35. PN-EN ISO 17892-12:2018-08. (2018). Rozpoznanie i badania geotechniczne – Badania laboratoryjne gruntów – Część 12: Oznaczanie granic płynności i plastyczności.
  36. Puri, V.K. (2000). Geotechnical aspects of oil-contaminated sands. Journal of Soil Contamination 9, 359–374. https://doi.org/10.1080/10588330091134301
  37. Puri, V.K., Das, B.M., Cook, E.E., & Shin, E.C. (1994). Geotechnical properties of crude oil contaminated sand. ASTM Special Technical Publication 1265, 58–66. https://doi.org/10.1520/STP12658S
  38. Rajabi, H., & Sharifipour, M. (2019). Geotechnical properties of hydrocarbon contaminated soils: A comprehensive review. Bulletin of Engineering Geology and the Environment 78, 3685–3717. https://doi.org/10.1007/s10064-018-1377-7
  39. Saeed, H., Nalbantoglu, Z., & Uygar, E. (2024). A comprehensive review of hydrocarbon contaminated soil behavior, geotechnical properties and potential remediation. Soil and Sediment Contamination: An International Journal 34(6), 1023–1067. https://doi.org/10.1080/15320383.2024.2395952
  40. Salimnezhad, A., Soltani-Jigheh, H., & Soorki, A.A. (2021). Effects of oil contamination and bioremediation on geotechnical properties of highly plastic clayey soil. Journal of Rock Mechanics and Geotechnical Engineering 13(3), 653–670. https://doi.org/10.1016/j.jrmge.2020.11.011
  41. Sanecki, L., Truty, A., & Urbański, A. (1999). O możliwościach modelowania komputerowego stateczności złożonych układów geotechnicznych. Materiały XLV Konferencji Nauk KILiW PAN, Krynica–Wrocław.
  42. Shin, E.C., Lee, J.B., & Das, B.M. (1999). Bearing capacity of a model scale footing on crude oil-contaminated sand. Geotechnical and Geological Engineering 17, 123–132. https://doi.org/10.1023/A:1016078420298
  43. Siang, A.J.L.M., Wijeyesekera, D.C., Yahya, S.M.A.S., & Ramlan, M. (2014). Innovative testing investigations on the influence of particle morphology and oil contamination on the geotechnical properties of sand. International Journal of Integrated Engineering 6, 60–66.
  44. Trzciński, J. (1998). Ilościowa analiza mikrostrukturalna w skaningowym mikroskopie elektronowym (SEM) gruntów poddanych oddziaływaniu wody. In: B. Grabowska-Olszewska (Ed.), Geologia stosowana. Właściwości gruntów nienasyconych (pp. 113–150). Warszawa: Wydawnictwo Naukowe PWN.
  45. Yilmaz, I. (2006). Indirect estimation of the swelling percent and a new classification of soils depending on liquid limit and cation exchange capacity. Engineering Geology 85, 295–301. https://doi.org/10.1016/j.enggeo.2006.02.011
  46. Yukselen, Y., & Kaya, A. (2008). Suitability of the methylene blue test for surface area, cation exchange capacity and swell potential determination of clayey soils. Engineering Geology 102, 38–45. https://doi.org/10.1016/j.enggeo.2008.08.001
  47. Zadroga, B., & Olańczuk-Neyman, K. (2001). Ochrona i rekultywacja podłoża gruntowego. Aspekty geotechniczno-budowlane. Gdańsk: Wydawnictwo Politechniki Gdańskiej.
DOI: https://doi.org/10.37705/TechTrans/e2025023 | Journal eISSN: 2353-737X | Journal ISSN: 0011-4561
Language: English
Submitted on: Oct 23, 2025
|
Accepted on: Dec 4, 2025
|
Published on: Dec 15, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Dorota Izdebska-Mucha, Kamil Kiełbasiński, Paweł Dobak, Emilia Wójcik, Gintaras Žaržojus, published by Cracow University of Technology
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.