References
- Anandarajah, A. (2003). Mechanism controlling permeability change in clays due to changes in pore fluids. Journal of Geotechnical and Geoenvironmental Engineering 129(2), 163–172. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:2(163)
- Aiban, S.A. (1998). The long-term environmental effects of the Gulf War. The effect of temperature on the engineering properties of oil-contaminated sands. Environmental International 24, 153–161. https://doi.org/10.1016/S0160-4120(97)00131-1
- Al-Sanad, H.A., Eid, W.K., & Ismael, N.F. (1995). Geotechnical properties of oilcontaminated Kuwaiti sand. Journal of Geotechnical Engineering 121(5), 407–412. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:5(407)
- ASTM D3080-04. (2004). Standard test method for direct shear test of soils under consolidated drained conditions. ASTM International.
- Chen, F.H. (1975). Foundations on expansive soils. Elsevier.
- Chmielewski, J., Żeber-Dzikowska, I., Pawlas, K., Nowak-Starz, G., ChojnowskaĆwiąkała, I., Dębska, A., Szpringer, M., Gworek, B., & Czarny-Działak, M. (2020). Substancje ropopochodne – zagrożenie dla środowiska i zdrowia w kontekście edukacji ekologicznej. Przemysł Chemiczny 99(6), 837–843. https://doi.org/10.15199/62.2020.6.1
- Czado, B., Korzeniowska-Rejmer, E., & Pietras, J.S. (2010). Analiza zmian nośności podłoża budowlanego w wyniku jego zanieczyszczenia substancjami ropopochodnymi na przykładzie gruntów piaszczystych. Górnictwo i Geoinżynieria 34(2), 165–171.
- Dobak, P. (1999). The role of the filtration factor in uniaxial consolidation tests of soils (in Polish). Kraków: Wydawnictwo IGSMiE.
- Dobak, P., & Gaszyński, J. (2015). Aspects of permeability and rheology in uniaxial consolidation, considering analysis of soil deformation progress and pore pressure dissipation. Architecture Civil Engineering Environment 7(4), 47–55.
- Dobak, P., Izdebska-Mucha, D., Stajszczak, P., Wójcik, E., Kiełbasiński, K., Gawriuczenkow, I., Szczepański, T., Zawrzykraj, P., & Bąkowska, A. (2022). Effects of hydrocarbon contamination on the engineering geological properties of Neogene clays and Pleistocene glacial tills from Central Poland. Acta Geologica Polonica 72(4), 529–555. https://doi.org/10.24425/agp.2022.142647
- Griffiths, D.V., & Lane, P.A. (1999). Slope stability analysis by finite elements. Geotechnique 49, 387–403.
- Head, K.H. (1992). Manual of soil laboratory testing. Vol. 1: Soil classification and compaction tests. London.
- IS 1498. (1970). Indian standard classification and identification of soils for general engineering purposes. New Delhi: BIS.
- Izdebska-Mucha, D., & Korzeniowska-Rejmer, E. (2010). Selected characteristics of clay soils polluted by petroleum substances in the context of their barrier properties. In: M. Datta, R.K. Srivastava, G.V. Ramana, & J.T. Shahu (Eds.), Proceedings of the 6th International Congress on Environmental Geotechnics, Vol. 1 (pp. 705–710). New Delhi:Tata McGraw-Hill Education.
- Izdebska-Mucha, D., Trzciński, J., & Klein, M. (2021). The effect of diesel fuel contamination on the particle size distribution and plasticity of muds from the area of Warsaw-Siekierki. Przegląd Geologiczny 69(12), 800–810.
- Izdebska-Mucha, D., Trzciński, J., Żbik, M., & Frost, R.L. (2011). Influence of hydrocarbon contamination on clay soil microstructure. Clay Mineral, 46, 47–58. https://doi.org/10.1180/claymin.2011.046.1.04
- Izdebska-Mucha, D., & Wójcik, E. (2014). Expansivity of Neogene clays and glacial tills from central Poland. Geological Quarterly 58(2), 281–290. https://doi.org/10.7306/gq.1151
- Karkush, M.O., & Jihad, A.G. (2020). Studying the geotechnical properties of clayey soil contaminated by kerosene. Key Engineering Materials 857, 383–393. https://doi.org/10.4028/www.scientific.net/KEM.857.383
- Karkush, M.O., & Kareem, Z.A. (2017). Investigation of the impacts of fuel oil on the geotechnical properties of cohesive soil. Engineering Journal 21, 127–137. https://doi.org/10.4186/ej.2017.21.4.127
- Kaya, A., & Fang, H.-Y. (2000). The effects of organic fluids on physicochemical parameters of fine-grained soils. Canadian Geotechnical Journal 37(4), 943–950. https://doi.org/10.1139/t00-033
- Kaya, A., & Fang, H. (2005). Experimental evidence of reduction in attractive and repulsive forces between clay particles permeated with organic liquids. Canadian Geotechnical Journal 42, 632–640. https://doi.org/10.1139/t04-112
- Kermani, M., & Ebadi, T. (2012). The effect of oil contamination on the geotechnical properties of fine-grained soils. Soil and Sediment Contamination: An International Journal 21, 655–671. https://doi.org/10.1080/15320383.2012.672486
- Khamehchiyan, M., Charkhabi, A.H., & Tajik, M. (2007). Effects of crude oil contamination on geotechnical properties of clayey and sandy soils. Engineering Geology 89(3–4), 220–229. https://doi.org/10.1016/j.enggeo.2006.10.009
- Khosravi, E., Ghasemzadeh, H., Sabour, M. R., & Yazdani, H. (2013). Geotechnical properties of gas oil-contaminated kaolinite. Engineering Geology 166, 11–16. https://doi.org/10.1016/j.enggeo.2013.08.004
- Korzeniowska-Rejmer, E. (2001). Wpływ zanieczyszczeń ropopochodnych na charakterystykę geotechniczną gruntów stanowiących podłoże budowlane. Inżynieria Morska i Geotechnika 2, 83–86.
- Korzeniowska-Rejmer, E., & Izdebska-Mucha, D. (2006). Ocena wpływu zanieczyszczeń ropopochodnych na uziarnienie i plastyczność gruntów spoistych. Inżynieria i Ochrona Środowiska 9(1), 89–103.
- Ling, S.Y., & Yong, L.C. (2013). Behavior of piles in palm biodiesel contaminated mining sand. International Journal of Environmental Science 3, 1822–1830.
- Merwe, D. H. van der. (1964). The prediction of heave from the plasticity index and percentage clay fraction of soils. Civil Engineer in South Africa 6, 103–106.
- Oluremi, J. R., & Osuolale, O. M. (2014). Oil contaminated soil as potential applicable material in civil engineering construction. Journal of Environment and Earth Science 4, 87–99.
- Onyelowe, K. C. (2015). Pure crude oil contamination on Amaoba lateritic soil. Electronic Journal of Geotechnical Engineering 20, 1129–1142.
- PKN-CEN ISO/TS 17892-4:2009. (2009). Badania geotechniczne – Badania laboratoryjne gruntów – Część 4: Oznaczanie składu granulometrycznego. PN-B-04481. (1988). Grunty budowlane. Badania próbek gruntu.
- PN-EN 1997-1:2008 (2008) Eurokod 7: Projektowanie geotechniczne – Część 1: Zasady ogólne.
- PN-EN ISO 14688-1:2018-05. (2018). Rozpoznanie i badania geotechniczne – Oznaczanie i klasyfikowanie gruntów – Część 1: Oznaczanie i opis.
- PN-EN ISO 17892-5:2017-06. (2017). Rozpoznanie i badania geotechniczne – Badania laboratoryjne gruntów – Część 5: Badanie edometryczne gruntów.
- PN-EN ISO 17892-12:2018-08. (2018). Rozpoznanie i badania geotechniczne – Badania laboratoryjne gruntów – Część 12: Oznaczanie granic płynności i plastyczności.
- Puri, V.K. (2000). Geotechnical aspects of oil-contaminated sands. Journal of Soil Contamination 9, 359–374. https://doi.org/10.1080/10588330091134301
- Puri, V.K., Das, B.M., Cook, E.E., & Shin, E.C. (1994). Geotechnical properties of crude oil contaminated sand. ASTM Special Technical Publication 1265, 58–66. https://doi.org/10.1520/STP12658S
- Rajabi, H., & Sharifipour, M. (2019). Geotechnical properties of hydrocarbon contaminated soils: A comprehensive review. Bulletin of Engineering Geology and the Environment 78, 3685–3717. https://doi.org/10.1007/s10064-018-1377-7
- Saeed, H., Nalbantoglu, Z., & Uygar, E. (2024). A comprehensive review of hydrocarbon contaminated soil behavior, geotechnical properties and potential remediation. Soil and Sediment Contamination: An International Journal 34(6), 1023–1067. https://doi.org/10.1080/15320383.2024.2395952
- Salimnezhad, A., Soltani-Jigheh, H., & Soorki, A.A. (2021). Effects of oil contamination and bioremediation on geotechnical properties of highly plastic clayey soil. Journal of Rock Mechanics and Geotechnical Engineering 13(3), 653–670. https://doi.org/10.1016/j.jrmge.2020.11.011
- Sanecki, L., Truty, A., & Urbański, A. (1999). O możliwościach modelowania komputerowego stateczności złożonych układów geotechnicznych. Materiały XLV Konferencji Nauk KILiW PAN, Krynica–Wrocław.
- Shin, E.C., Lee, J.B., & Das, B.M. (1999). Bearing capacity of a model scale footing on crude oil-contaminated sand. Geotechnical and Geological Engineering 17, 123–132. https://doi.org/10.1023/A:1016078420298
- Siang, A.J.L.M., Wijeyesekera, D.C., Yahya, S.M.A.S., & Ramlan, M. (2014). Innovative testing investigations on the influence of particle morphology and oil contamination on the geotechnical properties of sand. International Journal of Integrated Engineering 6, 60–66.
- Trzciński, J. (1998). Ilościowa analiza mikrostrukturalna w skaningowym mikroskopie elektronowym (SEM) gruntów poddanych oddziaływaniu wody. In: B. Grabowska-Olszewska (Ed.), Geologia stosowana. Właściwości gruntów nienasyconych (pp. 113–150). Warszawa: Wydawnictwo Naukowe PWN.
- Yilmaz, I. (2006). Indirect estimation of the swelling percent and a new classification of soils depending on liquid limit and cation exchange capacity. Engineering Geology 85, 295–301. https://doi.org/10.1016/j.enggeo.2006.02.011
- Yukselen, Y., & Kaya, A. (2008). Suitability of the methylene blue test for surface area, cation exchange capacity and swell potential determination of clayey soils. Engineering Geology 102, 38–45. https://doi.org/10.1016/j.enggeo.2008.08.001
- Zadroga, B., & Olańczuk-Neyman, K. (2001). Ochrona i rekultywacja podłoża gruntowego. Aspekty geotechniczno-budowlane. Gdańsk: Wydawnictwo Politechniki Gdańskiej.