Have a personal or library account? Click to login
Influence of Rail Track Foundation Parameters on the Nonlinear Dynamic Response of a Railway Track Cover

Influence of Rail Track Foundation Parameters on the Nonlinear Dynamic Response of a Railway Track

By: Piotr Kozioł and  Zenon Pilecki  
Open Access
|Dec 2025

References

  1. Adomian, G. (1989). Nonlinear Stochastic Systems Theory and Application to Physics. Dordrecht: Kluwer Academic Publishers.
  2. Adomian, G. (1994). Solving Frontier Problems of Physics: The Decomposition Method. Boston: Kluwer.
  3. Monzón, L., Beylkin, G., Hereman, W. (1999). Compactly supported wavelets based on almost interpolating and nearly linear phase filters (coiflets). Applied and Computational Harmonic Analysis 7(2), 184–210. https://doi.org/10.1006/acha.1999.0266
  4. Bogacz, R., Czyczula, W. (2008). Response of beam on viscoelastic foundation to moving distributed load. Journal of Theoretical and Applied Mechanics 46(4), 763–775.
  5. Bogacz, R., Krzyzynski, T., Popp, K. (1998). Wave propagation in two dynamically coupled periodic systems. In: Proceedings of the International Symposium on Dynamics of Continua (pp. 55–64). Bad Honnef: Shaker Verlag.
  6. Czyczuła, W., Chudyba, L., Kapturkiewicz, D., Lisowicz, T. (2023). Nieliniowa aproksymacja oporów systemów przytwierdzeń. Konferencja Naukowo-Techniczna: Drogi Kolejowe 2023, Kraków.
  7. Czyczuła, W., Koziol, P., Kudla, D., Lisowski, S. (2017). Analytical evaluation of track response in the vertical direction due to a moving load. Journal of Vibration and Control 23(18), 2989–3006. https://doi.org/10.1177/1077546315612120
  8. Fathi, S., Mehravar, M., Rahman, M. (2023). Development of FWD based hybrid back-analysis technique for railway track condition assessment, Transportation Geotechnics 38, 100894, ISSN 2214-3912. https://doi.org/10.1016/j.trgeo.2022.100894
  9. Fryba, L. (1972). Vibration of Solids and Structures under Moving Loads. Groningen: Noordhoff International Publishing.
  10. Koziol, P. (2010). Wavelet approach for the vibratory analysis of beam-soil structures: Vibrations of dynamically loaded systems. Saarbrucken: VDM Verlag Dr. Müller.
  11. Koziol, P. (2014). Wavelet approximation of Adomian’s decomposition applied to the nonlinear problem of a double-beam response subject to a series of moving loads. Journal of Theoretical and Applied Mechanics 52(3), 687–697.
  12. Koziol, P. (2016). Experimental validation of wavelet based solution for dynamic response of railway track subjected to a moving train. Mechanical Systems and Signal Processing 79, 174–181. https://doi.org/10.1016/j.ymssp.2015.03.011
  13. Koziol, P. (2023). Nonlinear “Beam Inside Beam” Model Analysis by Using a Hybrid Semi-analytical Wavelet Based Method. In: Recent Trends in Wave Mechanics and Vibrations (pp. 615–621). Springer. https://doi.org/10.1007/978-3-031-23560-3_46
  14. Koziol, P., Dimitrovova, Z., Pilecki, R. (2021). Dynamic properties of a nonlinear double-beam system subjected to a series of moving loads. In: Proceedings of the 14th World Congress on Computational Mechanics (WCCM XIV) and 8th European Congress on Computational Methods in Applied Science and Engineering (ECCOMAS 2020), 2661–2662.
  15. Koziol, P., Kudla, D. (2018). Vertical vibrations of rail track generated by random irregularities of rail head rolling surface. Journal of Physics: Conference Series 1106, 012007. https://doi.org/10.1088/1742-6596/1106/1/012007
  16. Koziol, P., Hryniewicz, Z. (2012). Dynamic response of a beam resting on a nonlinear foundation to a moving load: coiflet-based solution. Shock and Vibration 19, 995–1007. https://doi.org/10.1155/2012/389476
  17. Koziol, P., Mares, C. (2010). Wavelet approach for vibration analysis of fast moving load on a viscoelastic medium. Shock and Vibration 17(4–5), 461–472. https://doi.org/10.1155/2010/579310
  18. Koziol, P., Pilecki, R. (2020). Semi-analytical modelling of multilayer continuous systems nonlinear dynamics. Archives of Civil Engineering 66(2), 165–178. https://doi.org/10.24425/ace.2020.131803
  19. Koziol, P., Pilecki, R. (2021). Nonlinear double-beam system dynamics. Archives of Civil Engineering 67(2), 337–353. https://doi.org/10.24425/ace.2021.137172
  20. Lasisi, A., Attoh-Okine, N. (2021). Hybrid rail track quality analysis using nonlinear dimension reduction technique with machine learning. Canadian Journal of Civil Engineering. https://doi.org/10.1139/cjce-2019-0832
  21. Lombaert, G., Galvin, P., Francois, S., et al. (2014). Quantification of uncertainty in the prediction of railway induced ground vibration due to the use of statistical track unevenness data. Journal of Sound and Vibration 333, 4232–4253. https://doi.org/10.1016/j.jsv.2014.03.027
  22. Mallat, S. (1998). A Wavelet Tour of Signal Processing. Academic Press, London.
  23. Mathews, P.M. (1958). Vibration of beam on elastic foundation. Zeitschrift für Angewandte Mathematik und Mechanik 38, 105–115. https://doi.org/10.1002/zamm.19580380117
  24. Qu, S., Yang, J., Zhu, S., Zhai, W., Kouroussis, G. (2021). A hybrid methodology for predicting train-induced vibration on sensitive equipment in far-field buildings, Transportation Geotechnics 31, 100682. https://doi.org/10.1016/j.trgeo.2021.100682
  25. Ramos, A., Correia, A.G., Nasrollahi, K., Nielsen, J.C.O., Calçada, R. (2024). Machine Learning Models for Predicting Permanent Deformation in Railway Tracks, Transportation Geotechnics 47, 101289. https://doi.org/10.1016/j.trgeo.2024.101289
  26. Sun, L., Luo, F. (2008). Steady-state dynamic response of a Bernoulli–Euler beam on viscoelastic foundation subjected to a platoon of moving dynamic loads. Journal of Vibration and Acoustics 130(051002-17), 1–19. https://doi.org/10.1115/1.2943570
  27. Sun, L., Seyedkazemi, M., Nguyen, C.C., Zhang, J. (2025). Dynamics of Train– Track–Subway System Interaction—A Review, Machines 13(11), 1013. https://doi.org/10.3390/machines13111013
  28. Timoshenko, S. (1926). Method of analysis of static and dynamic stresses in rail. In: Proceedings of the 2nd International Congress on Applied Mechanics (pp. 407–418). Zurich, Switzerland.
  29. Wang, X., Bai, Y., Liu, X. (2023). Prediction of railroad track geometry change using a hybrid CNN-LSTM spatial-temporal model, Advanced Engineering Informatics 58, 102235. https://doi.org/10.1016/j.aei.2023.102235
  30. Wazwaz, A.M. (1999). A reliable modification of Adomian decomposition method. Applied Mathematics and Computation 102, 77–86. https://doi.org/10.1016/S0096-3003(98)10191-6
  31. Wojtaszczyk, P. (2000). Teoria falek. Podstawy matematyczne. Warszawa: PWN.
  32. Xie, J., Huang, J., Zeng, C., Jiang, S.-H., Podlich, N. (2020). Systematic Literature Review on Data-Driven Models for Predictive Maintenance of Railway Track: Implications in Geotechnical Engineering, Geosciences 10(11), 425. https://doi.org/10.3390/geosciences10110425
  33. Xin, T., Wang, S., Wang, P., Yang, Y., Dai, C. (2024). A Hybrid Method for Vehicle– Track Coupling Dynamics by Analytical and Finite Element Combination Technique, International Journal of Structural Stability and Dynamics 24(10), 2450105. https://doi.org/10.1142/S0219455424501050
  34. Zadeh S.S.A., Edwards, J.R., de O. Lima, A., Dersch, M.S., Palma, P. (2024). A data-driven approach to quantify track buckling strength through the development and application of a Track Strength Index (TSI), Transportation Geotechnics 48, 101359. https://doi.org/10.1016/j.trgeo.2024.101359
  35. Zhai, W., Stichel, S., Ling, L. (2025). Train–track coupled dynamics problems in heavy-haul rail transportation, Vehicle System Dynamics, International Journal of Vehicle Mechanics and Mobility 63(7), 1187–1240. https://doi.org/10.1080/00423114.2025.2494834
DOI: https://doi.org/10.37705/TechTrans/e2025021 | Journal eISSN: 2353-737X | Journal ISSN: 0011-4561
Language: English
Submitted on: Oct 24, 2025
Accepted on: Dec 3, 2025
Published on: Dec 1, 2025
Published by: Cracow University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Piotr Kozioł, Zenon Pilecki, published by Cracow University of Technology
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.