References
- Adomian, G. (1989). Nonlinear Stochastic Systems Theory and Application to Physics. Dordrecht: Kluwer Academic Publishers.
- Adomian, G. (1994). Solving Frontier Problems of Physics: The Decomposition Method. Boston: Kluwer.
- Monzón, L., Beylkin, G., Hereman, W. (1999). Compactly supported wavelets based on almost interpolating and nearly linear phase filters (coiflets). Applied and Computational Harmonic Analysis 7(2), 184–210. https://doi.org/10.1006/acha.1999.0266
- Bogacz, R., Czyczula, W. (2008). Response of beam on viscoelastic foundation to moving distributed load. Journal of Theoretical and Applied Mechanics 46(4), 763–775.
- Bogacz, R., Krzyzynski, T., Popp, K. (1998). Wave propagation in two dynamically coupled periodic systems. In: Proceedings of the International Symposium on Dynamics of Continua (pp. 55–64). Bad Honnef: Shaker Verlag.
- Czyczuła, W., Chudyba, L., Kapturkiewicz, D., Lisowicz, T. (2023). Nieliniowa aproksymacja oporów systemów przytwierdzeń. Konferencja Naukowo-Techniczna: Drogi Kolejowe 2023, Kraków.
- Czyczuła, W., Koziol, P., Kudla, D., Lisowski, S. (2017). Analytical evaluation of track response in the vertical direction due to a moving load. Journal of Vibration and Control 23(18), 2989–3006. https://doi.org/10.1177/1077546315612120
- Fathi, S., Mehravar, M., Rahman, M. (2023). Development of FWD based hybrid back-analysis technique for railway track condition assessment, Transportation Geotechnics 38, 100894, ISSN 2214-3912. https://doi.org/10.1016/j.trgeo.2022.100894
- Fryba, L. (1972). Vibration of Solids and Structures under Moving Loads. Groningen: Noordhoff International Publishing.
- Koziol, P. (2010). Wavelet approach for the vibratory analysis of beam-soil structures: Vibrations of dynamically loaded systems. Saarbrucken: VDM Verlag Dr. Müller.
- Koziol, P. (2014). Wavelet approximation of Adomian’s decomposition applied to the nonlinear problem of a double-beam response subject to a series of moving loads. Journal of Theoretical and Applied Mechanics 52(3), 687–697.
- Koziol, P. (2016). Experimental validation of wavelet based solution for dynamic response of railway track subjected to a moving train. Mechanical Systems and Signal Processing 79, 174–181. https://doi.org/10.1016/j.ymssp.2015.03.011
- Koziol, P. (2023). Nonlinear “Beam Inside Beam” Model Analysis by Using a Hybrid Semi-analytical Wavelet Based Method. In: Recent Trends in Wave Mechanics and Vibrations (pp. 615–621). Springer. https://doi.org/10.1007/978-3-031-23560-3_46
- Koziol, P., Dimitrovova, Z., Pilecki, R. (2021). Dynamic properties of a nonlinear double-beam system subjected to a series of moving loads. In: Proceedings of the 14th World Congress on Computational Mechanics (WCCM XIV) and 8th European Congress on Computational Methods in Applied Science and Engineering (ECCOMAS 2020), 2661–2662.
- Koziol, P., Kudla, D. (2018). Vertical vibrations of rail track generated by random irregularities of rail head rolling surface. Journal of Physics: Conference Series 1106, 012007. https://doi.org/10.1088/1742-6596/1106/1/012007
- Koziol, P., Hryniewicz, Z. (2012). Dynamic response of a beam resting on a nonlinear foundation to a moving load: coiflet-based solution. Shock and Vibration 19, 995–1007. https://doi.org/10.1155/2012/389476
- Koziol, P., Mares, C. (2010). Wavelet approach for vibration analysis of fast moving load on a viscoelastic medium. Shock and Vibration 17(4–5), 461–472. https://doi.org/10.1155/2010/579310
- Koziol, P., Pilecki, R. (2020). Semi-analytical modelling of multilayer continuous systems nonlinear dynamics. Archives of Civil Engineering 66(2), 165–178. https://doi.org/10.24425/ace.2020.131803
- Koziol, P., Pilecki, R. (2021). Nonlinear double-beam system dynamics. Archives of Civil Engineering 67(2), 337–353. https://doi.org/10.24425/ace.2021.137172
- Lasisi, A., Attoh-Okine, N. (2021). Hybrid rail track quality analysis using nonlinear dimension reduction technique with machine learning. Canadian Journal of Civil Engineering. https://doi.org/10.1139/cjce-2019-0832
- Lombaert, G., Galvin, P., Francois, S., et al. (2014). Quantification of uncertainty in the prediction of railway induced ground vibration due to the use of statistical track unevenness data. Journal of Sound and Vibration 333, 4232–4253. https://doi.org/10.1016/j.jsv.2014.03.027
- Mallat, S. (1998). A Wavelet Tour of Signal Processing. Academic Press, London.
- Mathews, P.M. (1958). Vibration of beam on elastic foundation. Zeitschrift für Angewandte Mathematik und Mechanik 38, 105–115. https://doi.org/10.1002/zamm.19580380117
- Qu, S., Yang, J., Zhu, S., Zhai, W., Kouroussis, G. (2021). A hybrid methodology for predicting train-induced vibration on sensitive equipment in far-field buildings, Transportation Geotechnics 31, 100682. https://doi.org/10.1016/j.trgeo.2021.100682
- Ramos, A., Correia, A.G., Nasrollahi, K., Nielsen, J.C.O., Calçada, R. (2024). Machine Learning Models for Predicting Permanent Deformation in Railway Tracks, Transportation Geotechnics 47, 101289. https://doi.org/10.1016/j.trgeo.2024.101289
- Sun, L., Luo, F. (2008). Steady-state dynamic response of a Bernoulli–Euler beam on viscoelastic foundation subjected to a platoon of moving dynamic loads. Journal of Vibration and Acoustics 130(051002-17), 1–19. https://doi.org/10.1115/1.2943570
- Sun, L., Seyedkazemi, M., Nguyen, C.C., Zhang, J. (2025). Dynamics of Train– Track–Subway System Interaction—A Review, Machines 13(11), 1013. https://doi.org/10.3390/machines13111013
- Timoshenko, S. (1926). Method of analysis of static and dynamic stresses in rail. In: Proceedings of the 2nd International Congress on Applied Mechanics (pp. 407–418). Zurich, Switzerland.
- Wang, X., Bai, Y., Liu, X. (2023). Prediction of railroad track geometry change using a hybrid CNN-LSTM spatial-temporal model, Advanced Engineering Informatics 58, 102235. https://doi.org/10.1016/j.aei.2023.102235
- Wazwaz, A.M. (1999). A reliable modification of Adomian decomposition method. Applied Mathematics and Computation 102, 77–86. https://doi.org/10.1016/S0096-3003(98)10191-6
- Wojtaszczyk, P. (2000). Teoria falek. Podstawy matematyczne. Warszawa: PWN.
- Xie, J., Huang, J., Zeng, C., Jiang, S.-H., Podlich, N. (2020). Systematic Literature Review on Data-Driven Models for Predictive Maintenance of Railway Track: Implications in Geotechnical Engineering, Geosciences 10(11), 425. https://doi.org/10.3390/geosciences10110425
- Xin, T., Wang, S., Wang, P., Yang, Y., Dai, C. (2024). A Hybrid Method for Vehicle– Track Coupling Dynamics by Analytical and Finite Element Combination Technique, International Journal of Structural Stability and Dynamics 24(10), 2450105. https://doi.org/10.1142/S0219455424501050
- Zadeh S.S.A., Edwards, J.R., de O. Lima, A., Dersch, M.S., Palma, P. (2024). A data-driven approach to quantify track buckling strength through the development and application of a Track Strength Index (TSI), Transportation Geotechnics 48, 101359. https://doi.org/10.1016/j.trgeo.2024.101359
- Zhai, W., Stichel, S., Ling, L. (2025). Train–track coupled dynamics problems in heavy-haul rail transportation, Vehicle System Dynamics, International Journal of Vehicle Mechanics and Mobility 63(7), 1187–1240. https://doi.org/10.1080/00423114.2025.2494834