References
- Andrus, R.D., Mohanan, N.P., Piratheepan, P., Ellis, B.S., & Holzer, T.L. (2017). Predicting shear wave velocity from cone penetration resistance. In Proceedings of 4th International Conference on Earthquake Geotechnical Engineering, June 25-28, Thessaloniki.
- Benz, T. (2007). Small-strain stiffness of soils and its numerical consequences. Phd, Universitat Sttutgart.
- Briaud, J.-L. & Gibbens, R. (1997). Large scale load test and data base of spread footings on sand. Technical Report Publication No. FHWA RD-97-068, Texas A&M University.
- Briaud, J.-L. & Gibbens, R. (1999). Behavior of Five Large Spread Footings in Sand. Journal of Geotechnical and Geoenvironmental Engineering. Journal of Geotechnical and Geoenvironmental Engineering 125(9), https://doi.org/10.1061/(ASCE)1090-0241(1999)125:9(787)
- Cudny, M. & Truty, A. (2020). Refinement of the hardening soil model within the small strain. Acta Geotechnica 150(8):0, 2031–2051
- Lai, F., Tschuchnigg, F., Schweiger, H.F., Songyu Liu, Jim Shiau & Guojun Cai (2025). A numerical study of deep excavations adjacent to existing tunnels: integrating CPTU and SDMT to calibrate soil constitutive model. Canadian Geotechnical Journal 62, 1–23. https://doi.org/10.1139/cgj-2024-0203
- Kawa, M., Puła, W., Truty, A. & Różański, A. (2025). Probabilistic analysis of deflection of an anchored diaphragm wall for Hardening Soil model and nonlinear model of concrete. Proc. of the 9th International Symposium on Geotechnical Safety and Risk (ISGSR). Singapore: Research Publishing.
- Kawa, M., Puła, W. & Truty, A. (2025). Probabilistic analysis of crack width and deflection of an anchored diaphragm wall installed in sand. Archives of Civil and Mechanical Engineering 25, 179. https://doi.org/10.1007/s43452-025-01230-6
- Mayne, P.W., Cargill, E. & Greig, J. (2023). The cone penetration test: better information better decisions. A CPT Design Parameter Manual. ConTec.
- Niemunis, A. & Cudny, M. Discussion on “Dynamic soil-structure interaction: A three-dimensional numerical approach and its application to the Lotung case study’’. Poor performance of the HSS model. Comput. Geotech. 98, 243–245 (2018).
- ZSOIL User manual ZSoil v2025. Soil, Rock and Structural Mechanics in dry or partially saturated media. Geodev, Lausanne, Switzerland.
- Moussa, A. (2025). Numerical modeling of scale load testing on spread footings in sandy soil: a comparative analysis of HSM and HYPO-Small models. Journal of Engineering and Applied Science 72(33). https://doi.org/10.1186/s44147-025-00602-2
- Obrzud, R. & Truty, A. (2020). The Hardening Soil Model. A practical guidebook. Report 100701.
- Robertson, P.K., & Cabal, K.L. (2022). Guide to Cone Penetration Testing. Signal Hill, CA.
- Schanz, T. & Vermeer, P. (1998). On the stiffness of sands. In Jardine R., Davies M., Hight, D., Smith A., and Stallebras S. (eds.) Pre-failure deformation behaviour of geomaterials (pp. 383–387). London: Thomas Telford.
- Schanz, T., Vermeer, P. & Bonier, P. (eds.) (1999). Formulation and verification of the Hardening Soil model. Beyond 2000 in Computational Geotechnics. Rotterdam: Balkema.
- Truty, A. (2024). Estimating Hardening Soil-Brick model parameters for sands based on CPTU tests and laboratory experimental evidence. Scientific Reports 14, 15102. https://doi.org/10.1038/s41598-024-65789-5
- Truty, A. & Obrzud, R. (2015). Improved formulation of the Hardening Soil model in the context of modeling the undrained behavior of cohesive soils. Studia Geotechnica et Mechanica 37(2), https://doi.org/10.1515/sgem-2015-0022
- Wichtmann, T., Kimmig, I. & Triantafyllidis, T. (2017). On correlations between “dynamic” (small-strain) and “static” (large-strain) stiffness moduli – an experimental investigation on 19 sands and gravels. Soil Dynamics and Earthquake Engineering 98(4), 72–83.
- Wichtmann, T. & Triantafyllidis, T. (2009). Influence of the Grain-Size Distribution Curve of Quartz Sand on the Small Strain Shear Modulus . Journal of Geotechnical and Geoenvironmental Engineering. ASCE 135(10), 1404–1418.