References
- Alexandrowicz, S.W., Radwan, D. (1973). Kreda opolska – problematyka stratygraficzna i złożowa. Przegląd Geologiczny 4, 183–188.
- Anderson, D.L., Minster, B., & Cole, D. (1974). The effect of oriented cracks on seismic velocities. Journal of Geophysical Research 79, 4011–4015.
- Barton, N., Lien, R., & Lunde, J. (1974). Engineering classification of rock masses for the design of tunnel support. Rock Mechanic, 6(4), 189–239.
- Barton, N. (1995). The influence of joint properties in modeling of jointed rock masses. Keynote lecture presented at the 8th International Society for Rock Mechanics Congress, Tokyo (Vol. III, pp. 1023–1032). Rotterdam: Balkema.
- Barton, N. (1996). Estimating rock mass deformation modulus for excavation disturbed zone studies. In J.B. Martino & C.D. Martin (Eds.), Proceedings of the Excavation Disturbed Zone Workshop (pp. 133–144). Manitoba, Canada, September 20, 1996.
- Barton, N. (2006). Rock Quality, Seismic Velocity, Attenuation and Anisotropy. Taylor & Francis: UK and The Netherlands.
- Barton, N. (2007). Near-surface gradients of rock quality, deformation modulus, Vp and Qp to 1 km depth. First Break 25(10), 53–60.
- Bieniawski, Z.T. (1978). Determining rock mass deformability: Experience from case histories. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 15, 237–247.
- Bieniawski, Z.T. (1989). Engineering rock mass classification. New York: Wiley.
- Dubiński, J. Konopko, W. (2000). Tąpania: ocena, prognoza, zwalczanie. Katowice: Główny Instytut Górnictwa.
- Harba, P., Pilecki, Z. (2017). Assessment of time-spatial changes of shear wave velocities of flysch formation prone to mass movements by seismic interferometry with use of ambient noise. Landslide 14(3), 1225–1233. https://doi.org/10.1007/s10346-016-0779-2.
- Harba, P., Pilecki, Z., Krawiec, K. (2019). Comparison of MASW and seismic interferometry with use of ambient noise for estimation of S-wave velocity field in landslide subsurface. Acta Geophysica 67, 1875–1883. https://doi.org/10.1007/s11600-019-00344-9.
- Hoek, E., Brown, E.T. (1980). Underground Excavation in Rock. London: Institution of Mining and Metallurgy.
- Hoek, E., Kaiser, P.K., & Bawden, W.F. (1995). Support of underground excavations in hard rock. Rotterdam: Balkema.
- Ide, J. M. (1936). Comparison of statically and dynamically determined Young’s modulus of rocks. Proceedings of the National Academy of Sciences 22(2), 81–92.
- Kudyk M., Pilecki, Z. (2009). Moduł deformacji utworów fliszu karpackiego na trasie tunelu Emilia w Beskidzie Żywieckim. Zeszyty Naukowe IGSMiE PAN 76, 45–63.
- Linowski, H. (1969). O zależności między dynamicznym a statycznym modułem sprężystości Younga. Acta Geoph. Pol., 17, 1.
- Łapczyński, M., Pilecki, Z., Krawiec, K., Słomian, A., Pilecka, E., Łątka, T. (2025). Modelling of P-wave velocity changes in coal seams with increased depth: a case study. Sci Rep 15, 3413. https://doi.org/10.1038/s41598-025-87417-6.
- Majcherczyk, T., Pilecki, Z., Niedbalski, Z., Pilecka, E., Blajer, M., Pszonka, J. (2012). Wpływ warunków geologiczno-inżynierskich i geotechnicznych na dobór parametrów obudowy wstępnej tunelu drogowego w Lalikach. Gospodarka Surowcami Mineralnymi/Mineral Resources Management 28(1), 103–124.
- Marcak, H., Zuberek, W. (1994). Geofizyka Górnicza. Katowice: Śląskie Wydawnictwo Techniczne.
- McCann, D.M., Culshaw, M.G., & Northmore, K.J. (1990). Rock mass assessment from seismic measurements. In Proceedings of the 24th Annual Conference of the Engineering Group of the Geological Society on Field Testing in Engineering Geology (pp. 257–266). London.
- Paterson, M.S., Wong, T.F. (2005). Experimental Rock Deformation – The Brittle Field, 2nd ed., Berlin, Heidelberg, and New York: Springer.
- Peryt, T.M. (1978). Sedimentology and paleoecology of the Zechstein Limestone (Upper Permian) in the Fore-Sudetic area (western Poland). Sedimentary Geology 20, 217–243.
- Pilecki, Z. (1999). Dynamic Analysis of Mining Tremor Impact on Excavation in Coal Mine. In FLAC and Numerical Modeling in Geomechanics; Detournay & Hart (eds) (pp. 397–400). Boca Raton, FL, USA: CRC Press.
- Pilecki, Z. (2018). Metoda sejsmiczna w geoinżynierii. Kraków: Wydawnictwo IGSMiE PAN.
- Pilecki, Z., Krawiec, K., Pilecka, E., Nagy, S., Łątka, T. (2025). Temperature anomaly as an indicator of groundwater flow prior to the shaft sinking with the use of artificial ground freezing. Engineering Geology 347, 107916. https://doi.org/10.1016/j.enggeo.2025.107916
- Pilecki, Z., Laskowski, M., Hryciuk, A., Pilecka, E., Czarny, R., Wróbel, J., Koziarz, E., Krawiec, K. (2013). Identification of gaso-geodynamic zones in the structure of copper ore deposits using geophysical methods. CIM Journal 5(3), 194–202.
- Reynolds, J. M. (2011). An introduction to applied and environmental geophysics (2nd ed.). Chichester: John Wiley & Sons Ltd.
- Schneider, B. (1967). Contribution à l’étude de massifs de la fondations de barrages. Transactions du Laboratoire de Géologie, Faculté des Sciences, Université de Grenoble 7, 1054–1094.
- Siggins, A. F. (1993). Dynamic elastic tests for rock engineering. In J. A. Hudson (Ed.), Comprehensive rock engineering (Vol. 3, pp. 601–618), Oxford: Pergamon Press.
- Sjögren, B., Ofsthus, A., Sandberg, J. (1979). Seismic classification of rock mass qualities. Geophysical Prospecting 27, 409–442.
- Sutherland, R.B. (1962). Some dynamic and static properties of rocks. In Proceedings of the 5th Symposium on Rock Mechanics (pp. 473–490). Minnesota.
- Ślizowski, J., Pilecki, Z., Urbańczyk, K., Pilecka, E., Lankof, L., Czarny, R. (2013). High-energy interactions and geomechanical implications in rock mass behavior. Advances in High Energy Physics, Article ID 461764. https://doi.org/10.1155/2013/461764
- Tajduś A., Cała M., Tajduś K. (2012). Geomechanika w budownictwie podziemnym: projektowanie i budowa tuneli. Wydawnictwa AGH. Kraków.