References
- Alanis-Gómez, R.P., Hernández-Rosas, F., Olivares-Hernández, J.D., Rivera-Muñoz, E.M., Zapatero-Gutiérrez, A., Méndez-Lozano, N., Alanis-Gómez, J. R., & Velázquez-Castillo, R. (2024). Magnesium-Doped Hydroxyapatite Nanofibers for Medicine Applications: Characterization, Antimicrobial Activity, and Cytotoxicity Study. International Journal of Molecular Sciences, 25(22), 12418. https://doi.org/10.3390/ijms252212418
- Arcos, D., & Vallet-Regí, M. (2020). Substituted hydroxyapatite coatings of bone implants. Journal of Materials Chemistry. B, 8(9), 1781–1800. https://doi.org/10.1039/c9tb02710f
- Arlot, M.E., Jiang, Y., Genant, H.K., Zhao, J., Burt-Pichat, B., Roux, J.-P., Delmas, P.D., & Meunier, P. J. (2008). Histomorphometric and μCT Analysis of Bone Biopsies From Postmenopausal Osteoporotic Women Treated With Strontium Ranelate. Journal of Bone and Mineral Research, 23(2), 215–222. https://doi.org/10.1359/jbmr.071012
- Azab, A.A., Esmail, S.A., & Abdelamksoud, M.K. (2019). Studying the Effect of Cobalt Doping on Optical and Magnetic Properties of Zinc Oxide Nanoparticles. Silicon, 11(1), 165–174. https://doi.org/10.1007/s12633-018-9902-4
- Bain, S.D., Jerome, C., Shen, V., Dupin-Roger, I., & Ammann, P. (2009). Strontium ranelate improves bone strength in ovariectomized rat by positively influencing bone resistance determinants. Osteoporosis International, 20(8), 1417–1428. https://doi.org/10.1007/s00198-008-0815-8
- Bhatnagar, D., Gautam, S., Sonowal, L., Bhinder, S.S., Ghosh, S., & Pati, F. (2024). Enhancing Bone Implants: Magnesium-Doped Hydroxyapatite for Stronger, Bioactive, and Biocompatible Applications. ACS Applied Bio Materials, 7(4), 2272–2282. https://doi.org/10.1021/acsabm.3c01269
- Boanini, E., Gazzano, M., & Bigi, A. (2010). Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomaterialia, 6(6), 1882–1894. https://doi.org/10.1016/j.actbio.2009.12.041
- Bonnelye, E., Chabadel, A., Saltel, F., & Jurdic, P. (2008). Dual effect of strontium ranelate: Stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone, 42(1), 129–138. https://doi.org/10.1016/j.bone.2007.08.043
- Bose, S., Fielding, G., Tarafder, S., & Bandyopadhyay, A. (2013). Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends in Biotechnology, 31(10), 594–605. https://doi.org/10.1016/j.tibtech.2013.06.005
- Cao, D., Xu, Z., Chen, Y., Ke, Q., Zhang, C., & Guo, Y. (2018). Ag-loaded MgSrFe-layered double hydroxide/chitosan composite scaffold with enhanced osteogenic and antibacterial property for bone engineering tissue. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 106(2), 863–873. https://doi.org/10.1002/jbm.b.33900
- Capuccini, C., Torricelli, P., Sima, F., Boanini, E., Ristoscu, C., Bracci, B., Socol, G., Fini, M., Mihailescu, I. N., & Bigi, A. (2008). Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: In vitro osteoblast and osteoclast response. Acta Biomaterialia, 4(6), 1885–1893. https://doi.org/10.1016/j.actbio.2008.05.005
- Cazalbou, S., Eichert, D., Ranz, X., Drouet, C., Combes, C., Harmand, M. F., & Rey, C. (2005). Ion exchanges in apatites for biomedical application. Journal of Materials Science: Materials in Medicine, 16(5), 405–409. https://doi.org/10.1007/s10856-005-6979-2
- Chen, Z., Zhang, W., Wang, M., Backman, L.J., & Chen, J. (2022). Effects of Zinc, Magnesium, and Iron Ions on Bone Tissue Engineering. ACS Biomaterials Science & Engineering, 8(6), 2321–2335. https://doi.org/10.1021/acsbiomaterials.2c00368
- Cheung, K.M.C., Lu, W.W., Luk, K.D.K., Wong, C.T., Chan, D., Shen, J.X., Qiu, G.X., Zheng, Z.M., Li, C.H., Liu, S.L., Chan, W.K., & Leong, J.C.Y. (2005). Vertebroplasty by Use of a Strontium-Containing Bioactive Bone Cement. Spine, 30(17S), S84. https://doi.org/10.1097/01.brs.0000175183.57733.e5
- Chopra, V., Thomas, J., Sharma, A., Panwar, V., Kaushik, S., Sharma, S., Porwal, K., Kulkarni, C., Rajput, S., Singh, H., Jagavelu, K., Chattopadhyay, N., & Ghosh, D. (2020). Synthesis and Evaluation of a Zinc Eluting rGO/Hydroxyapatite Nanocomposite Optimized for Bone Augmentation. ACS Biomaterials Science & Engineering, 6(12), 6710–6725. https://doi.org/10.1021/acsbiomaterials.0c00370
- Dahl, S. G., Allain, P., Marie, P.J., Mauras, Y., Boivin, G., Ammann, P., Tsouderos, Y., Delmas, P.D., & Christiansen, C. (2001). Incorporation and distribution of strontium in bone. Bone, 28(4), 446–453. https://doi.org/10.1016/S8756-3282(01)00419-7
- de Lima, C.O., de Oliveira, A.L.M., Chantelle, L., Silva Filho, E.C., Jaber, M., & Fonseca, M.G. (2021). Zn-doped mesoporous hydroxyapatites and their antimicrobial properties. Colloids and Surfaces. B, Biointerfaces, 198, 111471. https://doi.org/10.1016/j.colsurfb.2020.111471
- Dollwet, H.H.A., & Sorenson, J.R.J. (1988). Roles of copper in bone maintenance and healing. Biological Trace Element Research, 18(1), 39–48. https://doi.org/10.1007/BF02917487
- Dorozhkin, S.V. (2012). Calcium Orthophosphates: Applications in Nature, Biology, and Medicine. CRC Press.
- Driessens, F.C.M., Boltong, M.G., de Maeyer, E.A.P., Wenz, R., Nies, B., & Planell, J.A. (2002). The Ca/P range of nanoapatitic calcium phosphate cements. Biomaterials, 23(19), 4011–4017. https://doi.org/10.1016/S0142-9612(02)00151-5
- Dubok, V.A. (2000). Bioceramics ― Yesterday, Today, Tomorrow. Powder Metallurgy and Metal Ceramics, 39(7), 381–394. https://doi.org/10.1023/A:1026617607548
- Ewald, A., Käppel, C., Vorndran, E., Moseke, C., Gelinsky, M., & Gbureck, U. (2012). The effect of Cu(II)-loaded brushite scaffolds on growth and activity of osteoblastic cells. Journal of Biomedical Materials Research. Part A, 100(9), 2392–2400. https://doi.org/10.1002/jbm.a.34184
- Fan, W., Crawford, R., & Xiao, Y. (2010). Enhancing in vivo vascularized bone formation by cobalt chloride-treated bone marrow stromal cells in a tissue engineered periosteum model. Biomaterials, 31(13), 3580–3589. https://doi.org/10.1016/j.biomaterials.2010.01.083
- Fielding, G.A., Roy, M., Bandyopadhyay, A., & Bose, S. (2012). Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings. Acta Biomaterialia, 8(8), 3144–3152. https://doi.org/10.1016/j.actbio.2012.04.004
- Finney, L., Vogt, S., Fukai, T., & Glesne, D. (2009). Copper and angiogenesis: Unravelling a relationship key to cancer progression. Clinical and Experimental Pharmacology & Physiology, 36(1), 88–94. https://doi.org/10.1111/j.1440-1681.2008.04969.x
- G, A., P, N., R, S., & R, S. (2022). Multi-ionic interaction with magnesium doped hydroxyapatite-zeolite nanocomposite porous polyacrylonitrile polymer bead in aqueous solution and spiked groundwater. Environmental Pollution, 309, 119728. https://doi.org/10.1016/j.envpol.2022.119728
- Geng, Z., Cui, Z., Li, Z., Zhu, S., Liang, Y., Liu, Y., Li, X., He, X., Yu, X., Wang, R., & Yang, X. (2016). Strontium incorporation to optimize the antibacterial and biological characteristics of silver-substituted hydroxyapatite coating. Materials Science and Engineering: C, 58, 467–477. https://doi.org/10.1016/j.msec.2015.08.061
- Gérard, C., Bordeleau, L.-J., Barralet, J., & Doillon, C.J. (2010). The stimulation of angiogenesis and collagen deposition by copper. Biomaterials, 31(5), 824–831. https://doi.org/10.1016/j.biomaterials.2009.10.009
- Habibovic, P., & Barralet, J.E. (2011). Bioinorganics and biomaterials: Bone repair. Acta Biomaterialia, 7(8), 3013–3026. https://doi.org/10.1016/j.actbio.2011.03.027
- Hafeez, M., Afyaz, S., Khalid, A., Ahmad, P., Khandaker, M.U., Sahibzada, M.U.K., Ahmad, I., Khan, J., Alhumaydhi, F.A., Emran, T.B., & Idris, A.M. (2022). Synthesis of cobalt and sulphur doped titanium dioxide photocatalysts for environmental applications. Journal of King Saud University - Science, 34(4), 102028. https://doi.org/10.1016/j.jksus.2022.102028
- Hench, L.L., & Thompson, I. (2010). Twenty-first century challenges for biomaterials. Journal of The Royal Society Interface, 7(suppl_4), S379–S391. https://doi.org/10.1098/rsif.2010.0151.focus
- Hoppe, A., Güldal, N.S., & Boccaccini, A.R. (2011). A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials, 32(11), 2757–2774. https://doi.org/10.1016/j.biomaterials.2011.01.004
- Hu, G. (1998). Copper stimulates proliferation of human endothelial cells under culture. Journal of Cellular Biochemistry, 69(3), 326–335. https://doi.org/10.1002/(SICI)1097-4644(19980601)69:3%253C326::AIDJCB10%253E3.0.CO;2-A
- Jallot, E., Nedelec, J.M., Grimault, A.S., Chassot, E., Grandjean-Laquerriere, A., Laquerriere, P., & Laurent-Maquin, D. (2005). STEM and EDXS characterisation of physico-chemical reactions at the periphery of sol-gel derived Zn-substituted hydroxyapatites during interactions with biological fluids. Colloids and Surfaces. B, Biointerfaces, 42(3–4), 205–210. https://doi.org/10.1016/j.colsurfb.2005.03.001
- Kabir, H., Munir, K., Wen, C., & Li, Y. (2021). Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives. Bioactive Materials, 6(3), 836–879. https://doi.org/10.1016/j.bioactmat.2020.09.013
- Khosrowshahi, A.K., Khoshfetrat, A. B., Khosrowshahi, Y. B., & Maleki-Ghaleh, H. (2021). Cobalt content modulates characteristics and osteogenic properties of cobalt-containing hydroxyapatite in in-vitro milieu. Materials Today Communications, 27, 102392. https://doi.org/10.1016/j.mtcomm.2021.102392
- Kargozar, S., Mozafari, M., Ghodrat, S., Fiume, E., & Baino, F. (2021). Copper-containing bioactive glasses and glass-ceramics: From tissue regeneration to cancer therapeutic strategies. Materials Science & Engineering. C, Materials for Biological Applications, 121, 111741. https://doi.org/10.1016/j.msec.2020.111741
- Kattimani, V. S., Kondaka, S., & Lingamaneni, K.P. (2016). Hydroxyapatite–-Past, Present, and Future in Bone Regeneration. Bone and Tissue Regeneration Insights, 7, BTRI.S36138. https://doi.org/10.4137/BTRI.S36138
- Kazimierczak, P., Golus, J., Kolmas, J., Wojcik, M., Kolodynska, D., & Przekora, A. (2022). Noncytotoxic zinc-doped nanohydroxyapatite-based bone scaffolds with strong bactericidal, bacteriostatic, and antibiofilm activity. Biomaterials Advances, 139, 213011. https://doi.org/10.1016/j.bioadv.2022.213011
- Kramer, E., Itzkowitz, E., & Wei, M. (2014). Synthesis and characterization of cobalt-substituted hydroxyapatite powders. Ceramics International, 40(8, Part B), 13471–13480. https://doi.org/10.1016/j.ceramint.2014.05.072
- Kubiak-Mihkelsoo, Z., Kostrzębska, A., Błaszczyszyn, A., Pitułaj, A., Dominiak, M., Gedrange, T., Nawrot-Hadzik, I., Matys, J., & Hadzik, J. (2025). Ionic Doping of Hydroxyapatite for Bone Regeneration: Advances in Structure and Properties over Two Decades—A Narrative Review. Applied Sciences, 15(3), 1108. https://doi.org/10.3390/app15031108
- Kumta, P. N., Sfeir, C., Lee, D.-H., Olton, D., & Choi, D. (2005). Nanostructured calcium phosphates for biomedical applications: Novel synthesis and characterization. Acta Biomaterialia, 1(1), 65–83. https://doi.org/10.1016/j.actbio.2004.09.008
- Kurzyk, A., Szwed-Georgiou, A., Pagacz, J., Antosik, A., Tymowicz-Grzyb, P., Gerle, A., Szterner, P., Włodarczyk, M., Płociński, P., Urbaniak, M.M., Rudnicka, K., & Biernat, M. (2023). Calcination and ion substitution improve physicochemical and biological properties of nanohydroxyapatite for bone tissue engineering applications. Scientific Reports, 13(1), 15384. https://doi.org/10.1038/s41598-023-42271-2
- Landi, E., Sprio, S., Sandri, M., Celotti, G., & Tampieri, A. (2008). Development of Sr and CO3 co-substituted hydroxyapatites for biomedical applications. Acta Biomaterialia, 4(3), 656–663. https://doi.org/10.1016/j.actbio.2007.10.010
- Landi, E., Tampieri, A., Celotti, G., Sprio, S., Sandri, M., & Logroscino, G. (2007). Sr-substituted hydroxyapatites for osteoporotic bone replacement. Acta Biomaterialia, 3(6), 961–969. https://doi.org/10.1016/j.actbio.2007.05.006
- LeGeros, R.Z. (2008). Calcium phosphate-based osteoinductive materials. Chemical Reviews, 108(11), 4742–4753. https://doi.org/10.1021/cr800427g
- Li, T., Bai, Y., Zhang, C., Gao, Y., & Ma, W. (2025). Fabrication and Characterization of Magnesium-Doped Hydroxyapatite Coatings via Solution Precursor Plasma Spraying. Journal of Thermal Spray Technology, 34(5), 1970–1984. https://doi.org/10.1007/s11666-025-01987-5
- Liu, G., Talley, J.W., Na, C., Larson, S.L., & Wolfe, L.G. (2010). Copper Doping Improves Hydroxyapatite Sorption for Arsenate in Simulated Groundwaters. Environmental Science & Technology, 44(4), 1366–1372. https://doi.org/10.1021/es9015734
- Manto, M. (2014). Abnormal Copper Homeostasis: Mechanisms and Roles in Neurodegeneration. Toxics, 2(2), Artykuł 2. https://doi.org/10.3390/toxics2020327
- Martinez-Zelaya, V.R., Zarranz, L., Herrera, E.Z., Alves, A.T., Uzeda, M.J., Mavropoulos, E., Rossi, A.L., Mello, A., Granjeiro, J.M., Calasans-Maia, M.D., Rossi, A.M. (2019). In vitro and in vivo evaluations of nanocrystalline Zn-doped carbonated hydroxyapatite/alginate microspheres: Zinc and calcium bioavailability and bone regeneration. International Journal of Nanomedicine, 14, 3471–3490. https://doi.org/10.2147/IJN.S197157
- Mehrabi, T., Mesgar, A.S., & Mohammadi, Z. (2020). Bioactive Glasses: A Promising Therapeutic Ion Release Strategy for Enhancing Wound Healing. ACS Biomaterials Science & Engineering, 6(10), 5399–5430. https://doi.org/10.1021/acsbiomaterials.0c00528
- Minardi, S., Corradetti, B., Taraballi, F., Sandri, M., Van Eps, J., Cabrera, F.J., Weiner, B.K., Tampieri, A., & Tasciotti, E. (2015). Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation. Biomaterials, 62, 128–137. https://doi.org/10.1016/j.biomaterials.2015.05.011
- Mokhtari, S., Skelly, K.D., Krull, E.A., Coughlan, A., Mellott, N.P., Gong, Y., Borges, R., & Wren, A. W. (2017). Copper-containing glass polyalkenoate cements based on SiO2–ZnO–CaO–SrO–P2O5 glasses: Glass characterization, physical and antibacterial properties. Journal of Materials Science, 52(15), 8886–8903. https://doi.org/10.1007/s10853-017-0945-5
- Mokhtari, S., & Wren, A.W. (2019). Investigating the effect of Copper Addition on SiO2-ZnO-CaO-SrO-P2O5 Glass Polyalkenoate Cements: Physical, Mechanical and Biological Behavior. Biomedical Glasses, 5(1), 13–33. https://doi.org/10.1515/bglass-2019-0002
- Murugan, R., & Ramakrishna, S. (2004). Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials, 25(17), 3829–3835. https://doi.org/10.1016/j.biomaterials.2003.10.016
- Myint, Z.W., Oo, T.H., Thein, K.Z., Tun, A.M., & Saeed, H. (2018). Copper deficiency anemia: Review article. Annals of Hematology, 97(9), 1527–1534. https://doi.org/10.1007/s00277-018-3407-5
- Ni, G.X., Lu, W.W., Chiu, K.Y., Li, Z.Y., Fong, D.Y.T., & Luk, K.D.K. (2006). Strontium-containing hydroxyapatite (Sr-HA) bioactive cement for primary hip replacement: An in vivo study. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 77B(2), 409–415. https://doi.org/10.1002/jbm.b.30417
- Noori, A., Hoseinpour, M., Kolivand, S., Lotfibakhshaiesh, N., Azami, M., Ai, J., & Ebrahimi-Barough, S. (2022). Synergy effects of copper and L-arginine on osteogenic, angiogenic, and antibacterial activities. Tissue and Cell, 77, 101849. https://doi.org/10.1016/j.tice.2022.101849
- Noori, A., Hoseinpour, M., Kolivand, S., Lotfibakhshaiesh, N., Ebrahimi―Barough, S., Ai, J., & Azami, M. (2024). Exploring the various effects of Cu doping in hydroxyapatite nanoparticle. Scientific Reports, 14(1), 3421. https://doi.org/10.1038/s41598-024-53704-x
- Ohgushi, H., Dohi, Y., Tamai, S., & Tabata, S. (1993). Osteogenic differentiation of marrow stromal stem cells in porous hydroxyapatite ceramics. Journal of Biomedical Materials Research, 27(11), 1401–1407. https://doi.org/10.1002/jbm.820271107
- Oliveira, H.L., Da Rosa, W.L.O., Cuevas-Suárez, C.E., Carreño, N.L.V., da Silva, A.F., Guim, T.N., Dellagostin, O.A., & Piva, E. (2017). Histological Evaluation of Bone Repair with Hydroxyapatite: A Systematic Review. Calcified Tissue International, 101(4), 341–354. https://doi.org/10.1007/s00223-017-0294-z
- O’Neill, E., Awale, G., Daneshmandi, L., Umerah, O., & Lo, K.W.-H. (2018). The roles of ions on bone regeneration. Drug Discovery Today, 23(4), 879–890. https://doi.org/10.1016/j.drudis.2018.01.049
- Pilli, J., Gatto, G., Jain, S., & Bhattacharjee, A. (2025). Manganese dioxide- and cobalt oxide-doped hydroxyapatite with curcumin for orthopedic and dental applications. Journal of Materials Research, 40(9), 1293–1303. https://doi.org/10.1557/s43578-025-01575-x
- Porter, A.E., Patel, N., Skepper, J.N., Best, S.M., & Bonfield, W. (2003). Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials, 24(25), 4609–4620. https://doi.org/10.1016/S0142-9612(03)00355-7
- Predoi, D., Iconaru, S.L., Predoi, M.V., Buton, N., & Motelica-Heino, M. (2019). Zinc Doped Hydroxyapatite Thin Films Prepared by Sol–Gel Spin Coating Procedure. Coatings, 9(3), Artykuł 3. https://doi.org/10.3390/coatings9030156
- Qiu, K., Zhao, X.J., Wan, C.X., Zhao, C.S., & Chen, Y.W. (2006). Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds. Biomaterials, 27(8), 1277–1286. https://doi.org/10.1016/j.biomaterials.2005.08.006
- Reeve, L., & Baldrick, P. (2017). Biocompatibility assessments for medical devices – evolving regulatory considerations. Expert Review of Medical Devices, 14(2), 161–167. https://doi.org/10.1080/17434440.2017.1280392
- Reger, N.C., Kundu, B., Balla, V.K., & Bhargava, A.K. (2019). In vitro cytotoxicity and ion release of multi-ion doped hydroxyapatite. International Journal of Applied Ceramic Technology, 16(2), 503–516. https://doi.org/10.1111/ijac.13137
- Ressler, A., Žužić, A., Ivanišević, I., Kamboj, N., & Ivanković, H. (2021). Ionic substituted hydroxyapatite for bone regeneration applications: A review. Open Ceramics, 6, 100122. https://doi.org/10.1016/j.oceram.2021.100122
- Safari-Gezaz, M., Parhizkar, M., & Asghari, E. (2025). Effect of cobalt ions doping on morphology and electrochemical properties of hydroxyapatite coatings for biomedical applications. Scientific Reports, 15(1), 149. https://doi.org/10.1038/s41598-024-84055-2
- Safarzadeh, M., Ramesh, S., Tan, C.Y., Chandran, H., Noor, A.F.M., Krishnasamy, S., Alengaram, U.J., & Ramesh, S. (2019). Effect of multi-ions doping on the properties of carbonated hydroxyapatite bioceramic. Ceramics International, 45(3), 3473–3477. https://doi.org/10.1016/j.ceramint.2018.11.003
- Sen, C.K., Khanna, S., Venojarvi, M., Trikha, P., Ellison, E.C., Hunt, T.K., & Roy, S. (2002). Copper-induced vascular endothelial growth factor expression and wound healing. American Journal of Physiology-Heart and Circulatory Physiology, 282(5), H1821–H1827. https://doi.org/10.1152/ajpheart.01015.2001
- Sergi, R., Bellucci, D., Candidato, R.T., Lusvarghi, L., Bolelli, G., Pawlowski, L., Candiani, G., Altomare, L., De Nardo, L., & Cannillo, V. (2018). Bioactive Zn-doped hydroxyapatite coatings and their antibacterial efficacy against Escherichia coli and Staphylococcus aureus. Surface and Coatings Technology, 352, 84–91. https://doi.org/10.1016/j.surfcoat.2018.08.017
- Sharma, A., & Luthra, G. (2023). Significance of ISO 10993 Standards in Ensuring Biocompatibility of Medical Devices: A Review. Journal of Pharmaceutical Research International, 35(8), 23–34. https://doi.org/10.9734/jpri/2023/v35i87342
- Shi, H., Zhou, Z., Li, W., Fan, Y., Li, Z., & Wei, J. (2021). Hydroxyapatite Based Materials for Bone Tissue Engineering: A Brief and Comprehensive Introduction. Crystals, 11(2), Artykuł 2. https://doi.org/10.3390/cryst11020149
- Sobczak-Kupiec, A., & Wzorek, Z. (2010). Właściwości fizykochemiczne ortofosforanów wapnia istotnych dla medycyny—TCP i HAp. Czasopismo Techniczne. Chemia, 107(1-Ch), 309–322.
- Stötzel, C., Müller, F. A., Reinert, F., Niederdraenk, F., Barralet, J.E., & Gbureck, U. (2009). Ion adsorption behaviour of hydroxyapatite with different crystallinities. Colloids and Surfaces B: Biointerfaces, 74(1), 91–95. https://doi.org/10.1016/j.colsurfb.2009.06.031
- Szcześ, A., Hołysz, L., & Chibowski, E. (2017). Synthesis of hydroxyapatite for biomedical applications. Advances in Colloid and Interface Science, 249, 321–330. https://doi.org/10.1016/j.cis.2017.04.007
- Tahir, N., Ashraf, A., Waqar, S.H.B., Rafae, A., Kantamneni, L., Sheikh, T., & Khan, R. (2022). Copper deficiency, a rare but correctable cause of pancytopenia: A review of literature. Expert Review of Hematology, 15(11), 999–1008. https://doi.org/10.1080/17474086.2022.2142113
- Toledano, M., Osorio, R., Vallecillo-Rivas, M., Osorio, E., Lynch, C.D., Aguilera, F.S., Toledano, R., & Sauro, S. (2021). Zn-doping of silicate and hydroxyapatite-based cements: Dentin mechanobiology and bioactivity. Journal of the Mechanical Behavior of Biomedical Materials, 114, 104232. https://doi.org/10.1016/j.jmbbm.2020.104232
- Uysal, I., Yilmaz, B., & Evis, Z. (2021). Zn-doped hydroxyapatite in biomedical applications. Journal of the Australian Ceramic Society, 57(3), 869–897. https://doi.org/10.1007/s41779-021-00583-4
- Vincent, M., Duval, R.E., Hartemann, P., & Engels―Deutsch, M. (2018). Contact killing and antimicrobial properties of copper. Journal of Applied Microbiology, 124(5), 1032–1046. https://doi.org/10.1111/jam.13681
- Vindhya, P.S., & Kavitha, V.T. (2023). Effect of cobalt doping on antimicrobial, antioxidant and photocatalytic activities of CuO nanoparticles. Materials Science and Engineering: B, 289, 116258. https://doi.org/10.1016/j.mseb.2022.116258
- Wang, X., Huang, S., & Peng, Q. (2023). Metal Ion-Doped Hydroxyapatite-Based Materials for Bone Defect Restoration. Bioengineering, 10(12), 1367. https://doi.org/10.3390/bioengineering10121367
- Webster, T.J., Ergun, C., Doremus, R.H., & Bizios, R. (2002). Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. II. Mechanisms of osteoblast adhesion. Journal of Biomedical Materials Research, 59(2), 312–317. https://doi.org/10.1002/jbm.1247
- Weiss, K.M., Kucko, S.K., Mokhtari, S., Keenan, T.J., & Wren, A. W. (2023). Investigating the structure, solubility, and antibacterial properties of silver- and copper-doped hydroxyapatite. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 111(2), 295–313. https://doi.org/10.1002/jbm.b.35151
- Welch, A.A., Skinner, J., & Hickson, M. (2017). Dietary Magnesium May Be Protective for Aging of Bone and Skeletal Muscle in Middle and Younger Older Age Men and Women: Cross-Sectional Findings from the UK Biobank Cohort. Nutrients, 9(11), 1189. https://doi.org/10.3390/nu9111189
- Wu, X., Jiao, Y., Wu, J., Zhang, S., Xu, R., Zhao, Q., Lu, K., Zhang, P., Zhang, L., & Ni, X. (2024). Preparation, Characterization, and Bioactivities of Cobalt, Strontium and Fluorine Co-Doped Oxide Films on Titanium Surface for Clinical Application. Journal of Biomedical Nanotechnology, 20(4), 678–686. https://doi.org/10.1166/jbn.2024.3813
- Zhang, W., Shen, Y., Pan, H., Lin, K., Liu, X., Darvell, B. W., Lu, W. W., Chang, J., Deng, L., Wang, D., & Huang, W. (2011). Effects of strontium in modified biomaterials. Acta Biomaterialia, 7(2), 800–808. https://doi.org/10.1016/j.actbio.2010.08.031
- Zhao, R., Xie, P., Zhang, K., Tang, Z., Chen, X., Zhu, X., Fan, Y., Yang, X., & Zhang, X. (2017). Selective effect of hydroxyapatite nanoparticles on osteoporotic and healthy bone formation correlates with intracellular calcium homeostasis regulation. Acta Biomaterialia, 59, 338–350. https://doi.org/10.1016/j.actbio.2017.07.009
- Zhao, X., Yang, Z., Liu, Q., Yang, P., Wang, P., Wei, S., Liu, A., & Zhao, Z. (2022). Potential Load-Bearing Bone Substitution Material: Carbon-Fiber-Reinforced Magnesium-Doped Hydroxyapatite Composites with Excellent Mechanical Performance and Tailored Biological Properties. ACS Biomaterials Science & Engineering, 8(2), 921–938. https://doi.org/10.1021/acsbiomaterials.1c01247