Have a personal or library account? Click to login
Sunlight as a common good. A comparative study of the overshadowing of public spaces adjacent to contemporary multifamily housing developments based on the Wrocław example Cover

Sunlight as a common good. A comparative study of the overshadowing of public spaces adjacent to contemporary multifamily housing developments based on the Wrocław example

Open Access
|Sep 2025

References

  1. Alexander, E.R., Reed, K.D., & Murphy, P. (1988). Density measures and their relation to urban form. Center for Architecture and Urban Planning Research, University of Wisconsin.
  2. Aram, F., Higueras García, E., Solgi, E., & Mansournia, S. (2019). Urban green space cooling effect in cities. Heliyon, 5(4), e01339. https://doi.org/10.1016/j.heliyon.2019.e01339
  3. Bellia, L., & Fragliasso, F. (2021). Good places to live and sleep well: A literature review about the role of architecture in determining non-visual effects of light. International Journal of Environmental Research and Public Health, 18(3), 1002. https://doi.org/10.3390/ijerph18031002
  4. Berghauser Pont, M., & Haupt, P. (2007). The Spacemate: Density and the typomorphology of the urban fabric. Nordic Journal of Architectural Research, 4, 55–68.
  5. Berghauser Pont, M., & Haupt, P.A. (2023). Spacematrix: Space, Density and Urban Formrevised edition. Delft University of Technology. https://doi.org/10.59490/mg.38
  6. Bajwoluk, T., & Langer, P. (2023). The Pocket Park and Its Impact on the Quality of Urban Space on the Local and Supralocal Scale – Case Study of Krakow, Poland. Sustainability, 15(6), 5153. https://doi.org/10.3390/su15065153
  7. Borkowski, A. (2018). Analizy nasłonecznienia z wykorzystaniem BIM. Materiały Budowlane, 2(548), 62–63. https://doi.org/10.15199/33.2018.02.18
  8. Boubekri, M., Lee, J., MacNaughton, P., Woo, M., Schuyler, L., Tinianov, B., & Satish, U. (2020). The Impact of Optimized Daylight and Views on the Sleep Duration and Cognitive Performance of Office Workers. International Journal of Environmental Research and Public Health, 17(9), 3219. https://doi.org/10.3390/ijerph17093219
  9. Cadmapper. Retrieved from https://cadmapper.com/ (date of access: 2025/02/28).
  10. Capeluto, I.G., & Shaviv, E. (2001). On the use of ‘solar volume’ for determining the urban fabric. Solar Energy, 70(3), 275–280. https://doi.org/10.1016/S0038-092X(00)00088-8
  11. Czachura, A., Gentile, N., Kanters, J., & Wall, M. (2022). Identifying Potential Indicators of Neighbourhood Solar Access in Urban Planning. Buildings, 12(10), 1575. https://doi.org/10.3390/buildings12101575
  12. Czachura, A., Kanters, J., Gentile, N., & Wall, M. (2022). Solar Performance Metrics in Urban Planning: A Review and Taxonomy. Buildings, 12(4), 393. https://doi.org/10.3390/buildings12040393
  13. Crowley, S., Molina, T., & Burgess, H. (2014). A Week in the Life of Full-Time Office Workers: Work Day and Weekend Light Exposure in Summer and Winter. Applied Ergonomics, 46. https://doi.org/10.1016/j.apergo.2014.08.006
  14. De Luca, F. (2019). Advanced solar envelope generation. In Regenerative design in digital practice. A Handbook for the Built Environment (pp. 123–128). Bolzano: Eurac Research.
  15. Dogan, T., Reinhart, C., & Michalatos, P. (2012). Urban Daylight simulation: Calculating the daylit area of urban designs. In Fifth National Conference of IBPSA-USA (pp. 613–620).
  16. Dovey, K., & Pafka, E. (2014). The urban density assemblage: Modelling multiple measures. Urban Design International, 19(1), 66–76. https://doi.org/10.1057/udi.2013.13
  17. Dudzic-Gyurkovich, K. (2023). Living Space: The Contemporary Housing Environment as a Place for the Family. Technical Transactions, 120(1). https://doi.org/10.37705/TechTrans/e2023014
  18. Formolli, M., Kleiven, T., & Lobaccaro, G. (2023). Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters. Renewable and Sustainable Energy Reviews, 177, 113231. https://doi.org/10.1016/j.rser.2023.113231
  19. Germanova, T., & Bessonova, N. (2018). Analysis of the insolation regime of the territory for various types of residential development. IOP Conference Series: Earth and Environmental Science, 115, 012002. doi:10.1088/1755-1315/115/1/012002
  20. Główny Urząd Geodezji i Kartografii. Geoportal. Retrieved from https://www.geoportal.gov.pl/ (date of access: 2025/05/10).
  21. Islam, T., & Saiful Islam, K. (2015). Analysis of Building Shadow in Urban Planning: A Review. Retrieved from https://www.academia.edu/29973916/ANALYSIS_OF_BUILDING_SHADOW_IN_URBAN_PLANNING_A_REVIEW (date of access: 2025/05/10).
  22. Littlefair, P., King, S., Howlett, G., Ticleanu, C., & Longfield, A. (2022). Site layout planning for daylight and sunlight: A guide to good practice (BR 209, 3rd ed.). BRE Electronic Publications.
  23. Johansson, E., & Yahia, M.W. (2018). Wind comfort and solar access in a coastal development in Malmö, Sweden. In 10th International Conference on Urban Climatology.
  24. Kanters, J., Gentile, N., & Bernardo, R. (2021). Planning for solar access in Sweden: routines, metrics, and tools. Urban, Planning and Transport Research, 9(1), 347–367. https://doi.org/10.1080/21650020.2021.1944293
  25. Mead M. N. (2008). Benefits of sunlight: a bright spot for human health. Environmental health perspectives, 116(4), A160–A167. https://doi.org/10.1289/ehp.116-a160
  26. Mertens, E. (1999). Bioclimate and city planning – open space planning. Atmospheric Environment, 33(24), 4115–4123. https://doi.org/10.1016/S1352-2310(99)00153-3
  27. Miguet, F., & Groleau, D. (2002). A daylight simulation tool for urban and architectural spaces—application to transmitted direct and diffuse light through glazing. Building and Environment, 37, 833–843.
  28. Nasrollahi, N., & Shokri, E. (2016). Daylight illuminance in urban environments for visual comfort and energy performance. Renewable and Sustainable Energy Reviews, 66, 861–874. https://doi.org/10.1016/j.rser.2016.08.052
  29. Nault, E., Peronato, G., Rey, E., & Andersen, M. (2015). Review and critical analysis of early-design phase evaluation metrics for the solar potential of neighborhood designs. Building and Environment, 92, 679–691. https://doi.org/10.1016/j.buildenv.2015.05.012
  30. Polish Green Building Council (2025). Sustainable certified buildings 2025. Retrieved from https://cms.plgbc.org.pl/wp-content/uploads/2025/04/PLGBC-Report.Sustainable-certified-buildings-2025.pdf (date of access: 2025/05/18).
  31. Rynska, E., & Yanchuk, M. (2022). Dense and Proximate Development—Daylight in the Downtown Area of a Compact City. Sustainability, 14(2), 774. https://doi.org/10.3390/su14020774
  32. Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (Dz.U.2022 poz. 1225).
  33. San Jose, R., Perez, J.L., & Gonzalez, R.M. (2011). Sensitivity analysis of two different shadow models implemented into EULAG CFD model: Madrid experiment. Research Journal of Chemistry and Environment, 15(2), 1–5.
  34. Sattrup, P. A., & Strømann-Andersen, J. (2013). Building Typologies in Northern European Cities: Daylight, Solar Access, and Building Energy Use. Journal of Architectural and Planning Research, 30(1), 56–76. http://www.jstor.org/stable/43030993
  35. Seruga, P. (2024). Contemporary trends in design of public physical activity spaces in selected residential areas in Młynówka Królewska area, Cracow. Technical Transactions, 121(1), 2024. https://doi.org/10.37705/TechTrans/e2024006
  36. Schneider-Skalska, G. (2012). Functions and Forms of Social Space. Housing Environment, 10, 6–10.
  37. Sobol, M., Hebda, O. & Rybski, Ł. (2024). Human centric lighting luminaires: Practical design. Technical Transactions, 121(1). https://doi.org/10.37705/TechTrans/e2024002
  38. Sokół, N., & Martyniuk-Pęczek, J. (2017). Daylight design for urban residential planning in Poland: in regulations and practice. A comparison study of daylight conditions observed in the four neighbouring residential areas. World Multidisciplinary Civil Engineering-Architecture-Urban Planning Symposium (WMCAUS 2017), 1–9. https://doi.org/10.1088/1757-899x/245/8/082010
  39. Strømann-Andersen, J., & Sattrup, P. A. (2011). The urban canyon and building energy use: Urban density versus daylight and passive solar gains. Energy and Buildings, 43(8), 2011–2020. https://doi.org/10.1016/j.enbuild.2011.04.007
  40. System Informacji Przestrzennej Wrocławia. Retrieved from https://geoportal.wroclaw.pl/ (date of access: 2025/02/28).
  41. United Nations. The 17 goals. United Nations. Retrieved from https://sdgs.un.org/goals (date of access: 2025/05/20).
  42. Volf, C., Bueno, B., Edwards, P., Hobday, R., Mäder, S., Matusiak, B., Wulff, K., Osterhaus, W., Manoli, G., Giustina, C., Joshi, J., Kämpf, J., & Vega, K., Kueffer, C. (2024). Why daylight should be a priority for urban planning. Journal of Urban Management, 13, 175–182. https://doi.org/10.1016/j.jum.2024.02.002
  43. Yang, X., & Li, Y. (2015). The impact of building density and building height heterogeneity on average urban albedo and street surface temperature. Building and Environment, 90, 146–156. https://doi.org/10.1016/j.buildenv.2015.03.037
DOI: https://doi.org/10.37705/TechTrans/e2025010 | Journal eISSN: 2353-737X | Journal ISSN: 0011-4561
Language: English
Submitted on: May 18, 2025
Accepted on: Aug 1, 2025
Published on: Sep 20, 2025
Published by: Cracow University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Lea Kazanecka-Olejnik, published by Cracow University of Technology
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.