Have a personal or library account? Click to login
Torsional mode shapes of FGM shafts with various cross section Cover

Torsional mode shapes of FGM shafts with various cross section

By: Mateusz Kumor  
Open Access
|May 2025

References

  1. Aminbaghai, M., Murín, J., Balduzzi, G., Hrabovsky, J., Hochreiner, G., Mang, H.A. (2017). Second-order torsional warping theory considering the secondary torsion moment deformation-effect. Eng. Struct. 147, 724–773.
  2. Ashrafi, H.R., Beiranvand, P., Aghaei, M.Z., Jalili, D.D., (2018). Modal analysis of FGM plates (Sus304/Al2O3) using FEM. Bioceram Dev Appl, 8(112), 2.
  3. Gawroński, W., Kruszewski, J., Ostachowicz, W., Tarnowski, J., Wittbrodt E. (1984). Finite element method in structural dynamics. Warszawa: Arkady.
  4. Huyen, Nguyen Ngoc, and Nguyen Tien Khiem (2017). Modal analysis of functionally graded Timoshenko beam. Vietnam Journal of Mechanics 39(1): 31–50.
  5. Khiem, N.T., Hai, T.T., & Huong, L.Q. (2023). Modal analysis of cracked FGM beam with piezoelectric layer. Mechanics Based Design of Structures and Machines 51(9): 5120–5140.
  6. Khiem, N.T., Tran, H.T., & Nam, D. (2020). Modal analysis of cracked continuous Timoshenko beam made of functionally graded material. Mechanics Based Design of Structures and Machines 48(4): 459–479.
  7. Kim, J.-H., Paulino, G.H. (2002). Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials, J. Appl. Mech. 69(4): 502–514.
  8. Kruszewski, J. (1975). Finite stiff element method. Warszawa: Arkady.
  9. Mashat, Daoud, S., et al. (2014). Free vibration of FGM layered beams by various theories and finite elements. Composites Part B: Engineering 59: 269–278.
  10. Murin, J., Aminbaghai, M., Hrabovsky, J., Kutis, V., Paulech, J., Kugler, S. (2014). A new 3D FGM beam finite element for modal analysis. In: Proceedings of the 11th world congress on computational mechanics (WCCM XI), 5th European conference on computational mechanics (ECCM V), 6th European conference on computational fluid dynamics (ECFD VI). Barcelona.
  11. Murin, J., Aminbaghai, M., Hrabovsky, J., Gogola, R., Kugler, S. (2016). Beam finite element for modal analysis of FGM structures. Engineering Structures 121: 1–18.
  12. Nayak, P., Armani, A. (2022): Optimal design of functionally graded parts. Metals 12(8), 1335.
  13. Tabatabaei Shahidzadeh, S.J., Fattahi, A.M. (2022). A finite element method for modal analysis of FGM plates. Mechanics Based Design of Structures and Machines 50(4), 1111–1122.
  14. Timoshenko, S. (1983). History of strength of materials: with a brief account of the history of theory of elasticity and theory of structures. Courier Corporation.
DOI: https://doi.org/10.37705/TechTrans/e2025003 | Journal eISSN: 2353-737X | Journal ISSN: 0011-4561
Language: English
Submitted on: Jan 17, 2025
Accepted on: Apr 25, 2025
Published on: May 20, 2025
Published by: Cracow University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Mateusz Kumor, published by Cracow University of Technology
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.