Have a personal or library account? Click to login
The Role of Classical Image Processing Algorithms in the Age of AI Revolution Cover

The Role of Classical Image Processing Algorithms in the Age of AI Revolution

Open Access
|Dec 2024

References

  1. Akinpelu A., Bhullar M., Yao Y. (2024). Discovery of novel materials through machine learning. Journal of Physics Condensed Matter 36(45), art. 453001. https://doi.org/10.1088/1361-648X/ad6bdb
  2. Almukhalfi, H., Noor, A., Noor, T.H. (2024). Traffic management approaches using machine learning and deep learning techniques: A survey. Engineering Applications of Artificial Intelligence 133, Part B, https://doi.org/10.1016/j.engappai.2024.108147.
  3. Brian L. DeCost, Elizabeth A. Holm, A. (2015). Computer vision approach for automated analysis and classification of microstructural image data. Comput. Mater. Sci. 110, 126–133. https://doi.org/10.1016/j.commatsci.2015.08.011
  4. Choudhary, K., DeCost, B., Chen, C., Jain A., Tavazza, F., Cohn, R., Park, C.W., Choudhary, A., Agrawal, A., Billinge, S.J.L., Holm, E., Ong, S.P., Wolverton, C. (2022). Recent advances and applications of deep learning methods in materials science. npj Computational Materials 8(1), art. 59. https://doi.org/10.48550/arXiv.2110.14820
  5. Cruz-Orive, L.M., (2024). Stereology. Theory and Application, Springer, Interdisciplinary Applied Mathematics.
  6. Diwakar V., Sharma A., Yusufzai, M.Z.K., Vashista, M. (2024). Machine learning--based prediction of single clad characteristics and non-destructive characterization of multi-layer deposited FeCoNiCrMo HEA on EN24 via laser cladding. Materials Today Communications 41, art. 110839. https://doi.org/10.1016/j.mtcomm.2024.110839
  7. Ghilom, M., Latifi, S. (2024). The Role of Machine Learning in Advanced Biometric Systems. Electronics 13(13), art. 2667. https://doi.org/10.3390/electronics13132667
  8. Gururaj, H.L., Soundarya, B.C., Priya, S., Shreyas, J., Flammini, F. (Accepted/In press). A Comprehensive Review of Face Recognition Techniques, Trends and Challenges. IEEE Access 12, art. 1. https://doi.org/10.1109/ACCESS.2024.3424933
  9. Hendrix, W., Hendrix, N., Scholten, E.T. et al. (2023). Deep learning for the detection of benign and malignant pulmonary nodules in non-screening chest CT scans. Commun Med 3, 156. https://doi.org/10.1038/s43856-023-00388-5
  10. Islam, M.D, Rashid, S.I, Hossain, N.U.I, Fleming, R., Sokolov A., (2023). An integrated convolutional neural network and sorting algorithm for image classification for efficient flood disaster management. Decision Analytics Journal 7, art. 100225. https://doi.org/10.1016/j.dajour.2023.100225
  11. Jain, S., Singh, A., Shah, S.N., Lalam, R., Saxena, D. (2021). Machine Learning-Based Real-Time Traffic Control System, 2021 IEEE Mysore Sub Section International Conference (MysuruCon), Hassan, India, 92–97. https://doi.org/10.1109/MysuruCon52639.2021.9641643.
  12. Jaspin, K., Yogasundar, K., Shree Vishnu, S. (2024). Satellite Images Classification by Using Artificial Intelligence Techniques, 2024 International Conference on Innovations and Challenges in Emerging Technologies (ICICET), Nagpur, India, 1–6. https://doi.org/10.1109/ICICET59348.2024.10616283.
  13. DeMille, K.J., Hall, R., Leigh, J.R., Guven, I., Spear, A.D. (2024). Materials design using genetic algorithms informed by convolutional neural networks: Application to carbon nanotube bundles. Composites Part B: Engineering 286, art. 111751. https://doi.org/10.1016/j.compositesb.2024.111751
  14. Koh, D.-M., Papanikolaou, N., Bick, U., Illing, R., Kahn, C.E. Jr., Kalpathi-Cramer, J., Matos, C., Martí-Bonmatí, L., Miles, A., Mun, S.K., Napel, S., Rockall, A., Sala, E., Strickland, N., Prior, F. (2022). Artificial intelligence and machine learning in cancer imaging. Commun Med. 2, 133. https://doi.org/10.1038/s43856-022-00199-0
  15. Morgan, D., Jacobs, R. (2020). Opportunities and Challenges for Machine Learning in Materials Science. Annual Review of Materials Research 50, 71–103. https://doi.org/10.1146/annurev-matsci-070218-010015
  16. Müller, M., Britz, D., Staudt, T., Mücklich, F. (2021). Microstructural Classification of Bainitic Subclasses in Low-Carbon Multi-Phase Steels Using Machine Learning Techniques. Metals 11(11), art. 1836. https://doi.org/10.3390/met11111836
  17. Nakrani, M.G., Sable, G.S., Shinde, U.B. (2020). ResNet based Lung Nodules Detection from Computed Tomography Images. International Journal of Innovative Technology and Exploring Engineering 9(4), 1711–1714. https://doi.org/10.35940/ijitee.D1540.029420
  18. Pal, O.K., Roy, S., Modok, A.K., Teethi, T.I., Sarker, S.K. (2024). ULung: A Novel Approach for Lung Image Segmentation. 6th International Conference on Computing and Informatics (ICCI), New Cairo–Cairo, Egypt, 2024, 522–527. https://doi.org/10.1109/ICCI61671.2024.10485043
  19. Sowmya, D., Deepa, P., Venugopal, K. (2017). Remote sensing satellite image processing techniques for image classification: a comprehensive survey. Int. J. Comput. Appl. 161(11), 24–37. https://doi.org/10.5120/ijca2017913306
  20. Tehrani, A.M., Oliynyk, A.O., Parry, M., Rizvi, Z., Couper S., Lin F., Miyagi L., Sparks T.D., Brgoch J. (2018). Machine learning directed search for ultraincompressible, superhard materials. J. Am. Chem. Soc. 140, 9844–9853. https://doi.org/10.1021/jacs.8b02717
  21. Tian, J., Zhao, Y., Huang, Y., Li,Y., Zhang, Ch., Peng, S., Han, G., Liu,Y., (2024). Theoretical Prediction of Vickers Hardness for Oxide Glasses: Machine Learning Model, Interpretability Analysis, and Experimental Validation. Materialia 33, art. 102006. https://doi.org/10.1016/j.mtla.2024.102006
  22. Toorandaz, S., Taherkhani, K., Liravi, F., Toyserkani, E. (2024). A novel machine learning-based approach for in-situ surface roughness prediction in laser powder-bed fusion. Additive Manufacturing 91, art. 104354. https://doi.org/10.1016/j.addma.2024.104354
  23. Tran, K., Neiswanger, W., Yoon, J., Zhang, Q., Xing, E., Ulissi, Z.W. (2020). Methods for comparing uncertainty quantifications for material property predictions. Machine Learning: Science and Technology 1(2), art. 025006. https://doi.org/10.48550/arXiv.1912.10066
  24. Wang, Z.-L., Adachi, Y. (2019). Property prediction and properties-tomicrostructure inverse analysis of steels by a machine-learning approach. Materials Science and Engineering A, 744, 661–670. https://doi.org/10.1016/j.msea.2018.12.049
  25. Wang Z., Chang S., Bao X., Yu H., Guan S., Zhu K., Zheng Y., Li J., Gao X. (2024). Interpretable prediction of remanence in sintered NdFeB through machine learning strategy. Journal of Alloys and Compounds 1008, art. 176727. https://doi.org/10.1016/j.jallcom.2024.176727
  26. Villars, P., Cenzua, l.K. (2018). Pearson’s crystal data: crystal structure database for inorganic compounds. ASM International, Materials Park, 2010.
  27. Xie, T., Grossman, J.C. (2018). Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. Physical Review Letters 120(14), art. 145301. https://doi.org/10.1103/PhysRevLett.120.145301
  28. Zhang, J., Marszałek, M., Lazebnik, S., Schmid, C. (2007). Local features and kernels for classification of texture and object categories: A comprehensive study. International Journal of Computer Vision 73(2), 213–238. https://doi.org/10.1007/s11263-006-9794-4
  29. Zhao, Z. (2024). Predicting compressive strength of ultra-high-performance concrete using Naive Bayes regression in novel approaches. Multiscale and Multidisciplinary Modeling, Experiments and Design 7(6), 5235–5249. https://doi.org/10.1007/s41939-024-00511-6.
  30. Zhao, P., Wang, Y., Jiang, B., Wei, M., Zhang, H., Cheng, X., (2023). A new method for classifying and segmenting material microstructure based on machine learning. Materials & Design 227, art. 111775. https://doi.org/10.1016/j.matdes.2023.111775
  31. Zhu, B., Chen, Z., Hu, F. et al. (2022). Feature Extraction and Microstructural Classification of Hot Stamping Ultra-High Strength Steel by Machine Learning. JOM 74, 3466–3477. https://doi.org/10.1007/s11837-022-05265-5
  32. Zimmermann, M.G., Lengler, J., Glushych, V., Schopphoven, T., Meiners, W., Häfner, C.L., Holly, C. (2024). AI-based spatially resolved parameter prediction in laser metal deposition for increased process stability. Journal of Laser Applications 36(4), art. 042075. https://doi.org/10.2351/7.0001604
DOI: https://doi.org/10.37705/TechTrans/e2024025 | Journal eISSN: 2353-737X | Journal ISSN: 0011-4561
Language: English
Submitted on: Oct 23, 2024
Accepted on: Dec 16, 2024
Published on: Dec 23, 2024
Published by: Cracow University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Aneta Gądek-Moszczak, published by Cracow University of Technology
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.