Have a personal or library account? Click to login

Optimization of the conditions of cooperation of hybrid solutions of wind farms and solar farms for the area of Poland

Open Access
|Oct 2024

References

  1. Castro G.M., Klöckl C., Regner P., Schmidt J., Pereira A.O.Jr. (2022). Improvements to Modern Portfolio Theory based models applied to electricity systems. Energy Economics, Vol. 111, 1-16.
  2. Ceran B., Szczerbowski, R. (2017). Analiza techniczno-ekonomiczna instalacji fotowoltaicznej. Zeszyty Naukowe, Instytut Gospodarki Surowcami Mineralnymi i Energią PAN 98, 15–26.
  3. Chaves-Schwinteck, P. (2013). The Modern Portfolio Theory Applied to Wind Farm Investments, Oldenburg: Universität Oldenburg. PhD Thesis, Carl von Ossietzky.
  4. Cornes R.C., Schrier G., Besselaar E.M., Jones P.D. (2018). An Ensemble Version of the E-OBS Temperature and Precipitation Datasets. JGR Atmospferes.
  5. Dale M. (2013). A comparative analysis of energy costs of photovoltaic, solar thermal and wind electricity generation technologies, Global Climate & Energy Project. Article in Applied Sciences. Stanford: Stanford University, 1–13.
  6. DeLlano-Paz F., Cartelle-Barros J.J., Martínez-Fernández P. (2023). Application of modern portfolio theory to the European electricity mix: an assessment of environmentally optimal scenarios. Environment, Development and Sustainability, 26, 15001–15029.
  7. ECA&D project (online). Retrieved from: https://www.ecad.eu (access: 13.11.2023).
  8. Fernandez P.M. (2019). An application of the Modern Portfolio Theory to the optimization of the European Union power generation mix from an environmental perspective. PhD Thesis, Universidade da Coruna.
  9. Garcia C.R., González V., Contreras J., Custodio J.E.S.C. (2017). Applying modern portfolio theory for a dynamic energy portfolio allocation in electricity markets. Electric Power Systems Research 150, 11–23.
  10. Ec. Europa (online). Retrieved from: https://ec.europa.eu/eurostat/web/main/data/database (access: 2.12.2023).
  11. Kowalczyk A.M.; Czyża S. (2022). Optimising Photovoltaic Farm Location Using a Capabilities Matrix and GIS. Energies 15, 6693. https://doi.org/10.3390/en15186693
  12. Lopez M., Rodriguez N., Iglesias G. (2020). Combined Floating Offshore Wind and Solar PV. Journal of Marine Science and Engineering 8, 576.
  13. Markowitz H. (1952). Portfolio Selection. The Journal of Finance 7(1), 77–91.
  14. Nzelibe I.U., Ojediran D.D., Moses M. (2022). Geospatial Assessment and Mapping of Suitable Sites for a Utility-scale Solar PV Farm in Akure South, Ondo State, Nigeria. Geomatics and Environmental Engineering 16(4), 79-101.
  15. Patel M.R. (1999). Wind and Solar Power Systems, CRC Press LLC. New York: Merchant Marine Academy Kings Point.
  16. Project UERRA (online). Retrieved from: https://www.uerra.eu (access: 13.11.2023).
  17. Sharpe W.F. (1964). Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk. The Journal of Finance 19(3), 425–442.
  18. Silva A.R., Estanqueiro A. (2022). FromWind to Hybrid: A Contribution to the Optimal Design of Utility-Scale Hybrid Power Plants. Energies 15, 2560.
  19. Wyrobek J. (2018). Comparative Analysis of Wind Farms Financial Situation in Selected Countries of the European Union in years 2009–2017. Problems of World Agriculture 18(4), 504–514.
DOI: https://doi.org/10.37705/TechTrans/e2024009 | Journal eISSN: 2353-737X | Journal ISSN: 0011-4561
Language: English
Submitted on: May 10, 2024
Accepted on: Oct 10, 2024
Published on: Oct 12, 2024
Published by: Cracow University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Bernard Twaróg, published by Cracow University of Technology
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.