Bagaber, S.A. (2018). Sustainable Optimization of Dry Turning of Stainless Steel based on Energy Consumption and Machining Cost. Procedia CIRP, 397–400, https://doi.org/10.1016/j.procir.2018.08.300
Bakar, H.Z. (2020). Influence of rounded cutting-edge radius and machining parameters on surface roughness and tool wear in milling AISI H13 steel under dry and cryogenic machining. Journal Tribologi, 52–64 .
Denkena, B.L. (2011). Effects of the cutting edge microgeometry on tool wear and its thermo-mechanical load. CIRP Annals 1, 73–76. https://doi.org/10.1016/j.cirp.2011.03.098
Elewa, R. R. (2021). Effect of Machining on Stainless Steel: A Review. IOP Conference Series. Materials Science and Engineering; Bristol, 1. https://doi.org/10.1088/1757-899X/1107/1/012084
Li, P. C. (2022). Numerical Modeling of the Effect of Cutting-Edge Radius on Cutting Force and Stress Concentration during Machining. Micromachines, 211. https://doi.org/10.3390/mi13020211
Małek, M. G. (2022). Zastosowanie specjalnych monolitycznych narzędzi skrawających – studium przypadku. Inżynieria zarządzania: cyfryzacja produkcji. Aktualności badawcze 4, 229–238.
Muthuswamy, P. (2022). Investigation on sustainable machining characteristics of tools with serrated cutting edges in face milling of AISI 304 Stainless Steel. Procedia CIRP, 865–871. https://doi.org/10.1016/j.procir.2022.02.143
Odedeyi, P. B., Abou-El-Hossein, K., Liman, M. (2017). An experimental study of flank wear in the end milling of AISI 316 stainless steel with coated carbide inserts. Journal of Physics: Conference Series, 1. https://doi.org/10.1088/1742-6596/843/1/012058
Szczotkarz, N. M. (2020). Cutting tool wear in turning 316L stainless steel in the conditions of minimized lubrication. Tribology International. https://doi.org/10.1016/j.triboint.2020.106813