Baghbani, A., Choudhury, T., Costa, S., Reiner, J. (2022). Application of artificial intelligence in geotechnical engineering: A state-of-theart review. Earth-Science Reviews, Vol. 228, https://doi.org/10.1016/j.earscirev.2022.103991
Benardos, A., Kaliampakos, D. (2004). Modelling TBM performance with artificial neural networks. Tunnelling and Underground Space Technology 19(6): 597–605, http://doi.org/10.1016/j.tust.2004.02.128
Bergstra, J., Bardenet, R., Bengio, Y., Kegl, B. (2011). Algorithms for Hyper-Parameter Optimization. Advances in Neural Information Processing Systems 24: 2546–2554.
Bergstra, J., Yamins, D., Cox, D.D. (2013). Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. ICML’13: Proceedings of the 30th International Conference on International Conference on Machine Learning, Vol. 28: I-115–I-123.
Das, S.K., Basudhar, P. (2006). Undrained lateral load capacity of piles in clay using artificial neural network. Computers and Geotechnics 33(8): 454–459, http://doi.org/10.1016/j.compgeo.2006.08.006
Ferentinou, M., Sakellariou, M. (2007). Computational Intelligence tools for the prediction of slope performance. Computers and Geotechnics 34(5): 362–384, http://doi.org/10.1016/j.compgeo.2007.06.004, 2007
Giuntoli, G., Aguilar, J., Vázquez, M., Oller, S., Houzeaux, G. (2019). A FE 2 multi-scale implementation for modelling composite materials on distributed architectures. Coupled Systems Mechanics, Vol. 8: 99–109.
Goh, A., Kulhawy, F.H. (2003). Neural network approach to model the limit state surface for reliability analysis. Canadian Geotechnical Journal 40(6): 1235–1244, http://doi.org/10.1139/t03-056
Hashash, Y.M.A., Jung, S., Ghaboussi, J. (2004). Numerical implementation of a neural network based material model in finite element analysis. International Journal for Numerical Methods in Engineering 59(7): 989–1005.
Keskar, N.S., Nocedal, J., Tang, P.T.P., Mudigere, D., Smelyanskiy, M. (2017). On large-batch training for deep learning: Generalization gap and sharp minima. 5th International Conference on Learning Representations, ICLR 2017, Toulon, France.
Lefik, M. (2002). Artificial neural network for modelling an effective behavior of composite materials. Proceedings of the Fifth World Congress on Computational Mechanics (WCCM V), Vienna, Austria, July 7–12. Austria: Vienna University of Technology.
Moayedi, H., Mosallanezhad, M., Rashid, A.S.A. (2020). A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: theory and applications. Neural Comput. & Applic. 32: 495–518, https://doi.org/10.1007/s00521-019-04109-9
Najjar, Y.M., Huang, C. (2007). Simulating the stress–strain behavior of Georgia kaolin via recurrent neuronet approach. Computers and Geotechnics 34(5): 346–361, http://doi.org/10.1016/j.compgeo.2007.06.006
Shahin, M., Jaksa, M.B., Maier, H.R. (2008). State of the Art of Artificial Neural Networks in Geotechnical Engineering. Electronic Journal of Geotechnical Engineering, 8: 1–26.
Urbański, A. (2005). The unified, finite element formulation of homogenization of structural members with a periodic microstructure. Monograph no. 320. Kraków: Cracow University of Technology.