Have a personal or library account? Click to login

The modelling of layered rocks using a numerical homogenisation technique and an artificial neural network

Open Access
|May 2023

References

  1. Baghbani, A., Choudhury, T., Costa, S., Reiner, J. (2022). Application of artificial intelligence in geotechnical engineering: A state-of-theart review. Earth-Science Reviews, Vol. 228, https://doi.org/10.1016/j.earscirev.2022.103991
  2. Benardos, A., Kaliampakos, D. (2004). Modelling TBM performance with artificial neural networks. Tunnelling and Underground Space Technology 19(6): 597–605, http://doi.org/10.1016/j.tust.2004.02.128
  3. Bergstra, J., Bardenet, R., Bengio, Y., Kegl, B. (2011). Algorithms for Hyper-Parameter Optimization. Advances in Neural Information Processing Systems 24: 2546–2554.
  4. Bergstra, J., Yamins, D., Cox, D.D. (2013). Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. ICML’13: Proceedings of the 30th International Conference on International Conference on Machine Learning, Vol. 28: I-115–I-123.
  5. Bishop, C.M. (2006). Pattern Recognition and Machine Learning. New York: Springer.
  6. Das, S.K., Basudhar, P. (2006). Undrained lateral load capacity of piles in clay using artificial neural network. Computers and Geotechnics 33(8): 454–459, http://doi.org/10.1016/j.compgeo.2006.08.006
  7. Ferentinou, M., Sakellariou, M. (2007). Computational Intelligence tools for the prediction of slope performance. Computers and Geotechnics 34(5): 362–384, http://doi.org/10.1016/j.compgeo.2007.06.004, 2007
  8. Feyel, F. (1999). Multiscale FE2 elastoviscoplastic analysis of composite structures. Computational Materials Science, Vol. 16, Issues 1–4: 344–354.
  9. Ghaboussi, J., Pecknold, D.A., Zhang, M., HajAli, R.M. (1998). Autoprogressive training of neural network constitutive models. Int. J. Numer. Meth. Engng., 42: 105–126.
  10. Giuntoli, G., Aguilar, J., Vázquez, M., Oller, S., Houzeaux, G. (2019). A FE 2 multi-scale implementation for modelling composite materials on distributed architectures. Coupled Systems Mechanics, Vol. 8: 99–109.
  11. Goh, A., Kulhawy, F.H. (2003). Neural network approach to model the limit state surface for reliability analysis. Canadian Geotechnical Journal 40(6): 1235–1244, http://doi.org/10.1139/t03-056
  12. Hashash, Y.M.A., Jung, S., Ghaboussi, J. (2004). Numerical implementation of a neural network based material model in finite element analysis. International Journal for Numerical Methods in Engineering 59(7): 989–1005.
  13. Hertz, J., Krogh, A., Palmer, R.G. (1991). Introduction to the theory of neural computation. Redwood City, Calif: Addison-Wesley Pub.
  14. Keskar, N.S., Nocedal, J., Tang, P.T.P., Mudigere, D., Smelyanskiy, M. (2017). On large-batch training for deep learning: Generalization gap and sharp minima. 5th International Conference on Learning Representations, ICLR 2017, Toulon, France.
  15. Lefik, M. (2002). Artificial neural network for modelling an effective behavior of composite materials. Proceedings of the Fifth World Congress on Computational Mechanics (WCCM V), Vienna, Austria, July 7–12. Austria: Vienna University of Technology.
  16. Lucon, P.A., Donovan, R.P. (2007). An artificial neural network approach to multiphase continua constitutive modelling. Composites, Vol. 38.
  17. Moayedi, H., Mosallanezhad, M., Rashid, A.S.A. (2020). A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: theory and applications. Neural Comput. & Applic. 32: 495–518, https://doi.org/10.1007/s00521-019-04109-9
  18. Najjar, Y.M., Huang, C. (2007). Simulating the stress–strain behavior of Georgia kaolin via recurrent neuronet approach. Computers and Geotechnics 34(5): 346–361, http://doi.org/10.1016/j.compgeo.2007.06.006
  19. Raschka, S. (2017). Python Machine Learning (in Polish: Python. Uczenie maszynowe). Gliwice: Helion.
  20. Shahin, M., Jaksa, M.B., Maier, H.R. (2008). State of the Art of Artificial Neural Networks in Geotechnical Engineering. Electronic Journal of Geotechnical Engineering, 8: 1–26.
  21. Smith, L.N. (2017). Cyclical Learning Rates for Training Neural Networks, IEEE Winter Conference on Applications of Computer Vision (WACV): 464–472, http://doi.org/10.1109/WACV.2017.58
  22. Szeliga, M. (2017). Data Science and Machine Learning. (in Polish: Data Science i uczenie maszynowe). Gliwice: Helion.
  23. Urbański, A. (2005). The unified, finite element formulation of homogenization of structural members with a periodic microstructure. Monograph no. 320. Kraków: Cracow University of Technology.
  24. Vlasov, A.N., Merzlakov, W.P., Uzow, B.S. (1990). Effective characteristics of deformational properties of layered media (in Russian: Effektivnyje harakteristiki deformacionnyh svojstv sloistyh porod, Osnowanija, fundamenty i mehanika gruntov).
  25. Waszczyszyn, Z. (1999). Neural Networks in the Analysis and Design of Structures. CISM Courses and Lectures No. 404. Wien–New York: Springer.
  26. ZSoil.PC. User Manual. https://zsoil.com/zsoil/tutorials
DOI: https://doi.org/10.37705/TechTrans/e2023007 | Journal eISSN: 2353-737X | Journal ISSN: 0011-4561
Language: English
Submitted on: Jan 26, 2023
Accepted on: May 8, 2023
Published on: May 16, 2023
Published by: Cracow University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Aleksander Urbański, Szymon Ligęza, Piotr Przecherski, published by Cracow University of Technology
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.