Have a personal or library account? Click to login

Carbon fiber reinforced polymer and tensegrity structures in search of model architectural and engineering solutions

By:
Open Access
|Dec 2022

References

  1. Adriaenssens, S., Block, P., Veenendaal, D. & Williams, C.J.K. (2014). Shell structures for architecture: form finding and optimization. London, England: Routledge.10.4324/9781315849270
  2. Ashby, M.F., Ferreira, P.J. & Schodek, D.L. (2009). Nanomaterials, nanotechnologies and design: An introduction for engineers and architects. Amsterdam, Netherlands: Butterworth-Heinemann.
  3. Bacon, R. (1960). U.S. Patent No. US2957756A. Filamentary graphite and  method  for producing the same. Washington, DC: U.S. Patent and Trademark Office.
  4. Bakis, C.E., Bank, L.C., Brown, V.L., Cosenza, E., Davalos, J.F., Lesko, J.J., Machida, A., Rizkalla, S.H., Triantafillou, T.C. (2002). Fiber-Reinforced Polymer Composites for Construction—State-of-the-Art Review. Journal of Composites for Construction, 6(2). https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(73) 10.1061/(ASCE)1090-0268(2002)6:2(73)
  5. Bank L. C. (2006). Composites for construction: Structural Design with FRP Materials. USA: Wiley.10.1002/9780470121429
  6. Burdett, R., Cook, P. & Rogers, R. (1996). Richard Rogers Partnership: Works and projects. New York, US: The Monacelli Press.
  7. Cheung, K.C. & Gershenfeld, N. (2013). Reversibly Assembled Cellular Composite Materials. Science, 341(6151), 1219–1221. http://dx.doi.org/10.1126/science.1240889 10.1126/science.124088923950496
  8. Columbia (n.d.). Olympic fencing and gymnastics arenas. Retrieved from: http://www.columbia.edu/cu/gsapp/BT/DOMES/SEOUL/images.html (access: 2022/11/29).
  9. Corbusier, L. (2012). W strone architektury (Vers une architecture). Warszawa, Poland: Fundacja Centrum Architektury.
  10. Cramer, N.B., Cellucci, D.W., Formoso, O.B., Gregg, C.E., Jenett, B.E., Kim, J.H.,
  11. Cheung, K.C. (2019). Elastic shape morphing of ultralight structures by programmable assembly. Smart Materials and Structures, 28(5), 055006. https://doi.org/10.1088/1361-665X/ab0ea2 10.1088/1361-665X/ab0ea2781677433479558
  12. Dörstelmann, M., Knippers, J., Menges, A., Parascho, S., Prado, M. & Schwinn, T. (2015). ICD/ITKE Research Pavilion 2013–14: Modular Coreless Filament Winding Based on Beetle Elytra. Architectural Design, 85(5), 54–59. https://doi.org/10.1002/ad.1954 10.1002/ad.1954
  13. Dörstelmann, M., Knippers, J., Koslowski, V., Menges, A., Prado, M., Schieber, G. & Vasey, L. (2015). ICD/ITKE Research Pavilion 2014–15: Fibre Placement on a Pneumatic Body Based on a Water Spider Web. Architectural Design, 85(5), 60–65. https://doi.org/10.1002/ad.1955 10.1002/ad.1955
  14. Dong, L. & Wadley, H. (2015). Mechanical properties of carbon fiber composite octet-truss lattice structures. Composites Science and Technology, 119, 26–33. https://doi.org/10.1016/j.compscitech.2015.09.022 10.1016/j.compscitech.2015.09.022
  15. Emmerich D.G. (1988). Structures Tendues et Autotendantes. Paris, France:
  16. Edition del’Ecole d’Architecture de Paris La Vilette.
  17. Felbrich B., Früh N., Prado M., Saffarian S., Solly J., Vasey L., Knippers J. & Menges  A. (2017). Multi-Machine Fabrication: An Integrative Design Process Utilising an Autonomous UAV and Industrial Robots for the Fabrication of Long-Span Composite Structures. In ACADIA 2017: Disciplines + Disruption, Boston, USA, October.
  18. Fest, E., Shea, K.,  Domer, B.,  Smith, I. F. C. (2003). Adjustable Tensegrity Structures. Journal of Structural Engineering, 129(4). https://doi.org/10.1061/(ASCE)0733-9445(2003)129:4(515) 10.1061/(ASCE)0733-9445(2003)129:4(515)
  19. Franta, A. (2019). Myths and Realities of Adaptable city. Contemporary City as Adaptable Hybrid. IOP Conference Series Materials Science and Engineering, 471(9). 1–10. https://doi.org/10.1088/1757-899X/471/9/092030 10.1088/1757-899X/471/9/092030
  20. Fu, F. (2006). Non-linear static analysis and design of Tensegrity domes. Steel and Composite Structures, 6(5), 417-433. https://doi.org/10.12989/scs.2006.6.5.417 10.12989/scs.2006.6.5.417
  21. Gerardo Castro, M.ASCE & Matthys P. Levy, F.ASCE (June 7–9, 1992), Analysis of the Georgia Dome Cable Roof. In Proceedings of the Eighth Conference of Computing in Civil Engineering and Georgraphic Information Systems Symposium, ASCE, ed. by Barry J. Goodno & Jeff R. Wright. Dallas, TX.
  22. Gough, M. (1998). In the Laboratory of Constructivism: Karl Ioganson’s Cold Structures. October, 84, 90–117. https://doi.org/10.2307/779210 10.2307/779210
  23. Huu, T., Vo-Duy, D., Duong-Gia, D., & Nguyen-Thoi, T. (2018). An efficient procedure for lightweight optimal design of composite laminated beams. Steel and Composite Structures, 27(3), 297–310. http://dx.doi.org/10.12989/scs.2018.27.3.297
  24. Ikebata, S. & Uzawa, K. (2018). Seismic Reinforcing Material for Important Cultural Properties! Innovative New Construction Material Developed. Japan Science and Technology Agency – Science and Technology for Society.
  25. JEC Group. (2018). Construction and Infrastructure, CABKOMA CFRTP Strand Rod. JEC Innovation Awards 2018: 30 finalists exemplify the best composite innovation worldwide. Paris, France.
  26. Kasprzak, A. (2014). Study on possible applications of tensegrity structures in bridge engineering. PhD thesis, Faculty of Civil Engineering Warsaw University of Technology, Warszawa.
  27. Kayser, M., Cai, L., Falcone, S., Bader, C., Inglessis, N., Darweesh, B. & Oxman, N. (2018). FIBERBOTS: an autonomous swarm-based robotic system for digital fabrication of fiber-based composites. Construction Robotics, 2(1–4), 67–79. https://doi.org/10.1007/s41693-018-0013-y 10.1007/s41693-018-0013-y
  28. Knippers, J., Magna, R. L., Menges, A., Reichert, S., Schwinn, T. & Waimer, F. (2015). ICD/ITKE Research Pavilion 2012: Coreless Filament Winding Based on the Morphological Principles of an Arthropod Exoskeleton. Architectural Design, 85(5), 48–53. https://doi.org/10.1002/ad.1953 10.1002/ad.1953
  29. KomatsumateRe (n.d.). Lightweight, Strong and Corrosion-free. Retrieved from: https://www.komatsumatere.co.jp/cabkoma/en/ (access: 2022/11/29).
  30. Marks, R. & Fuller, R.B. (1973). The Dymaxion world of Buckminster Fuller. Garden City, New York, USA: Anchor Books.
  31. McDonough, W. & Braungart, M. (2003). The Hannover principles: Design for sustainability. Charlottesville, VA, USA: William McDonough + Partners.
  32. Melaragno, M. (1994). Tensegrity Structures: Filling the Gap Between Art and Science Spatial, lattice, and tension structures. In Proc., IASS-ASCE International Symposium 1994 on Spatial, Lattice and Tension Structures. Proceedings of the IASS-ASCE International Symposium 1994 on Spatial, Lattice and Tension Structures, 1994: 1024–1035.
  33. Millington, R.B. & Nordberg, R.C. (1966). U.S. Patent No. US3294489A. Process for preparing carbon fibers. Washington, DC, USA: U.S. Patent and Trademark Office.
  34. Morgan, M. & Warren, H. (1960). Vitruvius the ten books on architecture: With illustrations and original designs. NY, USA: Dover Publications.
  35. Motro R. (2003). Tensegrity: Structural systems for the future. London, United Kingdom: Hermes Science Publishing Limited.
  36. Motro. R. (2012). Tensegrity: from Art to Structural Engineering. In 2012 IASSAPCS Symposium, May 2012, Séoul, South Korea. 14, p. hal-00857410.
  37. Overstreet, K. (2016). Kengo Kuma Uses Carbon Fiber Strands to Protect Building from Earthquakes. Retrieved from https://www.archdaily.com/785175/komatsu-seiren-fabric-laboratory-creates-cabkoma-strand-rod-to-protect-building-from-ea (date of access: 2020/01/15).rthquakes (access: 2022/11/29).
  38. Pelczarski, M. (2013). About shaping the structure of Katowice Spodek-arena roof. Considerations from interviews with Prof. W. Zalewski. ARCHITECTUS, 69–82. https://doi.org/10.5277/arc130205
  39. Prado, M., Dörstelmann, M., Menges, A., Solly, J. & Knippers, J. (2017). Elytra Filament Pavilion. Fabricate 2017, 224–231. https://doi.org/10.2307/j.ctt1n7qkg7.35 10.2307/j.ctt1n7qkg7.35
  40. Pugh, A. (1976). An Introduction to tensegrity. Berkeley, CA, USA: University of California Press.10.1525/9780520338326
  41. Rastorfer D. (1988). Structural Gymnastics for the Olympics. Architectural Record, NY, USA: Columbia University.
  42. Salinas, J. G. O., Mendoza, M., & Meza, E. G. (2018). Reflections on Frei Otto as Mentor and Promoter of Sustainable Architecture and his collaboration with Kenzo Tange & Ove Arup in 1969. Journal of the International Association for Shell and Spatial Structures, 59(1), 87–100. https://doi.org/10.20898/j.iass.2018.195.900 10.20898/j.iass.2018.195.900
  43. Snelson K. (1973). Tensegrity Masts. CA, USA: Shelter Publications, Bolinas.
  44. Solomon Fortune (2016). Georgia dome’s roof: tired but true. Retrieved from: http://sites.gsu.edu/sfortune3/2016/03/09/georgia-dome-digital-artifact-5/ (access: 2022/11/29).
  45. Steve Jobs Theater: Foster Partners. Retrieved from https://www.fosterandpartners.com/projects/steve-jobs-theater/ (access: 2022/11/29).
  46. Thermoplastic carbon fiber composite. Retrieved from https://www.komatsumatere.co.jp/cabkoma/en/ (access: 2022/11/29).
  47. The Task Committee on Fiber-Reinforced Composite Structures for Overhead Lines of the Structural Engineering Institute of the ASCE. (2003). Recommended Practice for Fiber-Reinforced Polymer Products for Overhead Utility Line Structures. US: ASCE.
  48. Lin, Y., Lafarie-Frenot, M. C., Bai, J. & Gigliotti, M. (2018). Numerical simulation of the thermoelectric behavior of CNTs/CFRP aircraft composite laminates. Advances in Aircraft and Spacecraft Science, 5(6), 633–652. http://dx.doi.org/10.12989/aas.2018.5.6.633
  49. Wikimedia (2018). Kurilpa Bridge seen from William Jolly Bridge, Brisbane 01. Retrieved from: https://commons.wikimedia.org/wiki/File:Kurilpa_Bridge_seen_from_William_Jolly_Bridge,_Brisbane_01.jpg (access: 2022/11/29).
  50. Zając, D. (2019). High-strength composite materials in design process of tensegrity structures. In Proc. The Seventh International Conference on Structural Engineering, Mechanics and Computation, Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications (pp. 969–974). Cape Town, South Africa: CRC Press/Balkema.
DOI: https://doi.org/10.37705/TechTrans/e2022013 | Journal eISSN: 2353-737X | Journal ISSN: 0011-4561
Language: English
Submitted on: Nov 7, 2022
Accepted on: Dec 8, 2022
Published on: Dec 15, 2022
Published by: Cracow University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2022 Anna Franta, Dawid Zając, published by Cracow University of Technology
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.