Have a personal or library account? Click to login

How many neurons are needed to make a short-term prediction of the Bitcoin exchange rate?

Open Access
|Aug 2022

References

  1. Dutta, A., Kumar, S., Basu, M. (2020). A Gated Recurrent Unit Approach to Bitcoin Price Prediction. J. Risk Financial Manag., 13, 23. https://doi.org/10.3390/jrfm13020023
  2. Ferdiansyah, F., Othman, S.H., Zahilah Raja R., Md, Radzi, Stiawan, D., Sazaki, Y., Ependi, U. (2019). A LSTM-Method for Bitcoin Price Prediction: A Case Study Yahoo Finance Stock Market, International Conference on Electrical Engineering and Computer Science (ICECOS), 206–210, https://doi.org/10.1109/ICECOS47637.2019.8984499
  3. Ho, K.-H., Chan, T.-T., Pan, H., Li, C. (2021). Do Candlestick Patterns Work in Cryptocurrency Trading?, IEEE International Conference on Big Data, 4566–4569, https://doi.org/10.1109/BigData52589.2021.9671826
  4. Huang, Y., Capretz, L. F., Ho, D. (2021). Machine Learning for Stock Prediction Based on Fundamental Analysis. IEEE Symposium Series on Computational Intelligence (SSCI), 01–10, https://doi.org/10.1109/SSCI50451.2021.9660134
  5. Huang X. et al. (2021). LSTM Based Sentiment Analysis for Cryptocurrency Prediction. In: Database Systems for Advanced Applications, ed. C.S. Jensen. Lecture Notes in Computer Science, vol. 12683. Springer, Cham. https://doi.org/10.1007/978-3-030-73200-4_
  6. Hu, Z., Liu, W., Bian, J., Liu, X., Tie-Yan, L. (2018). Listening to Chaotic Whispers: A Deep Learning Framework for News-oriented Stock Trend Prediction. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining (WSDM‘18). New York: Association for Computing Machinery, 261–269. https://doi.org/10.1145/3159652.3159690
  7. Hyndman, R.J., Koehler, A.B. (2006). Another look at measures of forecast accuracy, International Journal of Forecasting, Vol. 22, Issue 4, 679–688, https://doi.org/10.1016/j.ijforecast.2006.03.001
  8. Inzirillo, H., Benjamin, M. (2021). Dimensionality reduction for prediction: Application to Bitcoin and Ethereum, arXiv: 2112.15036
  9. Ji, S., Kim, J., Im, H.A. (2019). Comparative Study of Bitcoin Price Prediction Using Deep Learning. Mathematics, 7, 898. https://doi.org/10.3390/math7100898
  10. Kingma, D., Ba, J. (2014). A Method for Stochastic Optimization. International Conference on Learning Representations.
  11. Li, T.R., Chamrajnagar, A.S., Fong, X.R., Rizik, N.R. Fu, F. (2019). Sentiment- Based Prediction of Alternative Cryptocurrency Price Fluctuations Using Gradient Boosting Tree Model. Front. Phys., 7: 98. https://doi.org/10.3389/fphy.2019.00098
  12. Liu, F., Li, Y., Li, B., Li, J., Xie, H. (2021). Bitcoin transaction strategy construction based on deep reinforcement learning. Applied Soft Computing, 113, 107952. 10.1016/j.asoc.2021.107952.10.1016/j.asoc.2021.107952
  13. Mangla, N., Bhat, A., Avabratha, G., Narayana Bhat (2019). Bitcoin Price Prediction Using Machine Learning, International Journal of Information and Computing Science.
  14. Matic, J.L., Packham, N., Härdle, W.K. (2021). Hedging Cryptocurrency Options. Retrieved from: https://ssrn.com/abstract=3968594 or http://dx.doi.org/10.2139/ssrn.3968594 [online: 1.03.2022].10.2139/ssrn.3968594
  15. Mezquita Y., Gil-González A.B., Prieto J., Corchado J.M. (2022). Cryptocurrencies and Price Prediction: A Survey. In: Blockchain and Applications, eds. J. Prieto, A. Partida, P. Leitão, A. Pinto. Lecture Notes in Networks and Systems, Vol. 320. Springer, Cham. https://doi.org/10.1007/978-3-030-86162-9
  16. Mittal, A., Dhiman, V., Singh, A., Prakash C. (2019). Short-Term Bitcoin Price Fluctuation Prediction Using Social Media and Web Search Data, 12th International Conference on Contemporary Computing (IC3), 1–6, https://doi.org/10.1109/IC3.2019.8844899
  17. Nakamoto, S. (2009). Bitcoin: A Peer-to-Peer Electronic Cash System, Cryptography Mailing. Retrieved from:https://metzdowd.com [online: 1.03.2022].
  18. Nazário, R.T.F., Lima e Silva, J., Sobreiro, V.A., Kimura, H. (2017). A literature review of technical analysis on stock markets. The Quarterly Review of Economics and Finance, Vol. 66: 115–126. https://doi.org/10.1016/j.qref.2017.01.014.
  19. Number of cryptocurrencies worldwide from 2013 to February 2022 (2022). Retrieved from: https://www.statista.com/statistics/863917/numbercrypto-coins-tokens [online: 1.03.2022].
  20. Patel, J., Kalariya, V., Parmar, P., Tanwar, S., Kumar, N., Alazab, M. (2020). Stochastic Neural Networks For Cryptocurrency Price Prediction. IEEE Access. https://doi.org/10.1109/ACCESS.2020.2990659
  21. Phaladisailoed, T., Numnonda, T. (2018). Machine Learning Models Comparison for Bitcoin Price Prediction, 10th International Conference on Information Technology and Electrical Engineering (ICITEE), 506–511, https://doi.org/10.1109/ICITEED.2018.8534911
  22. Rane, P.V., Dhage, S.N. (2019). Systematic Erudition of Bitcoin Price Prediction using Machine Learning Techniques, 5th International Conference on Advanced Computing & Communication Systems (ICACCS), 594–598, https://doi.org/10.1109/ICACCS.2019.8728424
  23. Rizwan, M., Narejo, S. Javed, M. (2019). Bitcoin price prediction using Deep Learning Algorithm, 13th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS), 1–7, https://doi.org/10.1109/MACS48846.2019.9024772
  24. Sen, J., Dutta, A., Mehtab, S., (2021). Stock Portfolio Optimization Using a Deep Learning LSTM Model, arXiv.org:2111.04709.
  25. Struga, K., Olti Q. (2018). Bitcoin Price Prediction with Neural Networks, RTACSIT.
  26. Taylor, S.J., Letham, B. (2017). Forecasting at scale. Peer J. Preprints 5:e3190v2, https://doi.org/10.7287/peerj.preprints.3190v2
  27. Top Cryptocurrency Spot Exchanges. Retrieved from: https://coinmarketcap.com/rankings/exchanges [online: 1.03.2022]. All Cryptocurrencies. Retrieved from: https://coinmarketcap.com/all/views/all [online: 1.03.2022].
  28. Tsai, Y., Chen, J., Wang, J. (2020). Predict Forex Trend via Convolutional Neural Networks. Journal of Intelligent Systems, 29, 941–958.10.1515/jisys-2018-0074
  29. Wołk, K. (2020). Advanced social media sentiment analysis for short-term cryptocurrency price prediction. Expert Systems. 37:e12493. https://doi.org/10.1111/exsy.12493
  30. Zhao, D., Rinaldo, A., Brookins, C. (2019). Cryptocurrency Price Prediction and Trading Strategies Using Support Vector Machines, arXiv:1911.11819.
DOI: https://doi.org/10.37705/TechTrans/e2022011 | Journal eISSN: 2353-737X | Journal ISSN: 0011-4561
Language: English
Submitted on: Mar 7, 2022
Accepted on: Aug 9, 2022
Published on: Aug 23, 2022
Published by: Cracow University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2022 Michał Frontczak, Tomasz Hachaj, published by Cracow University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.