Anielak, A. (2019). Kwasy humusowe. Ekstrakcja, analiza i znaczenie w środowisku oraz metody ich usuwania. Przemysł Chemiczny, 1580–1586. 10.15199/62.2019.10.10">http://doi.org/10.15199/62.2019.10.10
Anwer, M., Ahmed, M., Ansari, M., Khan, T. (2013). Inclusion complex of solid state aspirin with fulvic acid: dissolution, permeability, stability and preliminary pharmacological studies. Journal of Biological Sciences, 302–312. 10.3923/jbs.2013.302.312">http://doi.org/10.3923/jbs.2013.302.31210.3923/jbs.2013.302.312
Bi, D., Yuan, G., Wei, J., Xiao, L., Feng, L., Meng, F., Wang, J. (2019). A Soluble Humic Substance for the Simultaneous Removal of Cadmium and Arsenic from Contaminated Soils. International Journal of Environmental Research and Public Health. 10.3390/ijerph16244999">http://doi.org/10.3390/ijerph1624499910.3390/ijerph16244999
Damian, G.E., Micle, V., Sur, I.M. (2019). Mobilization of Cu and Pb from multi-metal contaminated soils by dissolved humic substances extracted from leonardite and factors affecting the process. Journal of Soils and Sediments, 2869–2881. 10.1007/s11368-019-02291-w">http://doi.org/10.1007/s11368-019-02291-w10.1007/s11368-019-02291-w
Dawood, M.G., Abdel-Baky, Y.R., El-Awadi, M.E., Bakhoum, G.S. (2019). Enhancement quality and quantity of faba bean plants grown under sandy soil conditions by nicotinamide and/or humic acid application. Bulletin of the National Research. 10.1186/s42269-019-0067-0">http://doi.org/10.1186/s42269-019-0067-010.1186/s42269-019-0067-0
Gao, X., Tan, W., Zhao, Y., Wu, J., Sun, Q., Qi, H., Wei, Z. (2019). Diversity in the Mechanisms of Humin Formation during Composting with Different Materials. Environmental Science & Technology, 3653–3662. 10.1021/acs.est.8b06401">http://doi.org/10.1021/acs.est.8b0640110.1021/acs.est.8b0640130821974
Gong, G., Yuan, X., Zhang, Y., Li, Y., Liu, W., Wang, M., Zhao, Y., Xu, L. (2020). Characterization of coal-based fulvic acid and the construction of a fulvic acid molecular model. The Royal Society of Chemistry. 10.1039/c9ra09907g">http://doi.org/10.1039/c9ra09907g10.1039/C9RA09907G904941835498324
Huculak-Mączka, M., Braun-Giwerska, D., Nieweś, D., Mulica, M., Hoffman, J., Hoffman, K. (2018). Torf i węgiel brunatny jako surowce do otrzymania kwasów humusowych. Proceedings of ECOpole, 499–505. 10.2429/proc.2018.12(2)049">http://doi.org/10.2429/proc.2018.12(2)049
Huculak-Mączka, M., Hoffman, J., Hoffman, K. (2018). Evaluation of the possibilities of using humic acids obtained from lignite in the production of commercial fertilizers. Journal of Soils and Sediments, 2868–2880. 10.1007/s11368-017-1907-x">http://doi.org/10.1007/s11368-017-1907-x10.1007/s11368-017-1907-x
Khan, M.Z., Ahmed, H., Ahmed, S., Khan, A., Khan, R.U., Hussain, F., Hayat, A., Sarwar, S. (2019). Formulation of humic substances coated fertilizer and its use to enhance K fertilizer use efficiency for tomato under greenhouse conditions. Journal of Plant Nutrition, 626–633. 10.1080/01904167.2019.1568462">http://doi.org/10.1080/01904167.2019.156846210.1080/01904167.2019.1568462
Khan, R., Jain, P., Aqil, M., Agarwal, S.P., Mirza, M.A., Iqbal, Z. (2020). Pharmacokinetic evaluation of fulvic acid-ketoconazole complexes: A validation and line extension study. Journal of Drug Delivery Science and Technology. 10.1016/j.jddst.2019.101469">http://doi.org/10.1016/j.jddst.2019.10146910.1016/j.jddst.2019.101469
Negm, A., Abu-Hashim, M. (2019). Sustainability of Agricultural Environment in Egypt: Part II. The Handbook of Environmental Chemistry, Merwad, A.M.A. Using Humic Substances and Foliar Spray with Moringa Leaf Extract to Alleviate Salinity Stress on Wheat. Springer, Cham, 265–286. 10.1007/698_2018_298">http://doi.org/10.1007/698_2018_29810.1007/698_2018_298
Qian, S., Ding, W., Li, Y., Liu, G., Sun, J., Ding, Q. (2015). Characterization of humic acids derived from Leonardite using a solid-state NMR spectroscopy and effects of humic acids on growth and nutrient uptake of snap bean. Chemical Speciation & Bioavailability, 156–161. 10.1080/09542299.2015.1118361">http://doi.org/10.1080/09542299.2015.111836110.1080/09542299.2015.1118361
Rombel-Bryzek, A., Pisarek, I. (2017). Wpływ kwasów huminowych na aktywność metaboliczną buraka cukrowego w warunkach suszy. Proceedings of ECOpole, 279–286. 10.2429/proc.2017.11(1)030">http://doi.org/10.2429/proc.2017.11(1)030
Shahabivand, S., Padash, A., Aghaee, A., Nasiri, Y., Rezaei, P.F. (2018). Plant biostimulants (Funneliformis mosseae and humic substances) rather than chemical fertilizer improved biochemical responses in peppermint. Iranian Journal of Plant Physiology, 2333–2344. 10.22034/ijpp.2018.539109">http://doi.org/10.22034/ijpp.2018.539109
Sharma, A., Antha, R. (2016). Humic Substances in Aquatic Ecosystems: A Review. International Journal of Innovative Research in Science, Engineering and Technology, 18462–18470. 10.15680/IJIRSET.2016.0510051">http://doi.org/10.15680/IJIRSET.2016.0510051
Veryho, N., Ziółkowski, M., Czarniecki, D., Kłopocka, M., Budzyński, J., Liebert, A., Szot, K., Chojnowski, J., Ponikowska, I. (2019). Wpływ kuracji pitnej wodą humusową na obrazowe i laboratoryjne parametry funkcji wątroby u pacjentów uzależnionych od alkoholu – wyniki wstępne. Hygeia Public Health, 48–55.
Yildiztekin, M., Tuna, A.L., Kaya, C. (2018). Physiological effects of the brown seaweed (Ascophyllum nodosum) and humic substances on plant growth, enzyme activities of certain pepper plants grown under salt stress. Acta Biologica Hungarica, 325–335. 10.1556/018.68.2018.3.8">http://doi.org/10.1556/018.68.2018.3.810.1556/018.68.2018.3.830257582