Anirudh, R., Venkataraman, V., Natesan Ramamurthy, K., & Turaga, P. (2016). A riemannian framework for statistical analysis of topological persistence diagrams. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 68–76).10.1109/CVPRW.2016.132
Bhaskar, D., Manhart, A., Milzman, J., Nardini, J. T., Storey, K. M., Topaz, C. M., & Ziegelmeier, L. (2019). Analyzing collective motion with machine learning and topology. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(12), 123–125.10.1063/1.5125493702742731893635
Billon, R., Nédélec, A., & Tisseau, J. (2008). Gesture recognition in flow based on PCA and using multiagent system. In Proceedings of the 2008 ACM symposium on Virtual reality software and technology (pp. 239–240).10.1145/1450579.1450632
Choi, W., Li, L., Sekiguchi, H., & Hachimura, K. (2013). Recognition of gait motion by using data mining. In 2013 13th International Conference on Control, Automation and Systems (ICCAS 2013) (pp. 1213–1216). IEEE.10.1109/ICCAS.2013.6704173
Choi, W., Ono, T., & Hachimura, K. (2009). Body Motion Analysis for Similarity Retrieval of Motion Data and Its Evaluation. In 2009 Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (pp. 1177–1180). IEEE.10.1109/IIH-MSP.2009.174
Choi, W., Sekiguchi, H., & Hachimura, K. (2009). Analysis of Gait Motion by Using Motion Capture in the Japanese Traditional Performing Arts. In 2009 Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (pp. 1164–1167). IEEE.10.1109/IIH-MSP.2009.171
Cornacchia, M., Ozcan, K., Zheng, Y., & Velipasalar, S. (2016). A survey on activity detection and classification using wearable sensors. IEEE Sensors Journal, 17(2), 386–403.10.1109/JSEN.2016.2628346
Das, S. R., Wilson, R. C., Lazarewicz, M. T., & Finkel, L. H. (2006). Two-stage PCA extracts spatiotemporal features for gait recognition. Journal of multimedia, 1(5), 9–17.
Dirafzoon, A., Lokare, N., & Lobaton, E. (2016). Action classification from motion capture data using topological data analysis. In 2016 IEEE global conference on signal and information processing (globalSIP) (pp. 1260–1264). IEEE.10.1109/GlobalSIP.2016.7906043
Ghrist, R. (2008). Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society, 45(1), 61–75.10.1090/S0273-0979-07-01191-3
Hachaj, T. (2019). Improving Human Motion Classification by Applying Bagging and Symmetry to PCA-Based Features. Symmetry, 11(10), 1264.10.3390/sym11101264
Hachaj, T., & Ogiela, M. R. (2018). Classification of Karate Kicks with Hidden Markov Models Classifier and Angle-Based Features. In 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) (pp. 1–5). IEEE.10.1109/CISP-BMEI.2018.8633251
Hachaj, T., Piekarczyk, M., & Ogiela, M. R. (2017). Human actions analysis: Templates generation, matching and visualization applied to motion capture of highly-skilled karate athletes. Sensors, 17(11), 2590.10.3390/s17112590
Idris, W. M. R. W., Rafi, A., Bidin, A., Jamal, A. A., & Fadzli, S. A. (2019). A systematic survey of martial art using motion capture technologies: the importance of extrinsic feedback. Multimedia Tools and Applications, 78(8), 10113–10140.10.1007/s11042-018-6624-y
Kim, H. C., Kim, D., & Bang, S. Y. (2002). Face recognition using the mixture-ofeigenfaces method. Pattern Recognition Letters, 23(13), 1549–1558.10.1016/S0167-8655(02)00119-8
Ko, J. H., Han, D. W., & Newell, K. M. (2018). Skill level changes the coordination and variability of standing posture and movement in a pistol-aiming task. Journal of Sports Sciences, 36(7), 809–816.10.1080/02640414.2017.134349028628398
Lee, M., Roan, M., & Smith, B. (2009). An application of principal component analysis for lower body kinematics between loaded and unloaded walking. Journal of biomechanics, 42(14), 2226–2230.10.1016/j.jbiomech.2009.06.05219674748
Mantovani, G., Ravaschio, A., Piaggi, P., & Landi, A. (2010). Fine classification of complex motion pattern in fencing. Procedia Engineering, 2(2), 3423–3428.10.1016/j.proeng.2010.04.168
Mokari, M., Mohammadzade, H., Ghojogh, B. (2020). Recognizing involuntary actions from 3D skeleton data using body states. Scientia Iranica, 27(3), 1424–1436.
Mrozek, M., Żelawski, M., Gryglewski, A., Han, S., & Krajniak, A. (2012). Homological methods for extraction and analysis of linear features in multidimensional images. Pattern Recognition, 45(1), 285–298.10.1016/j.patcog.2011.04.020
Presti, L. L., & La Cascia, M. (2016). 3D skeleton-based human action classification: A survey. Pattern Recognition, 53, 130–147.10.1016/j.patcog.2015.11.019
Som, A., Thopalli, K., Natesan Ramamurthy, K., Venkataraman, V., Shukla, A., & Turaga, P. (2018). Perturbation robust representations of topological persistence diagrams. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 617–635).10.1007/978-3-030-01234-2_38
Świtoński, A., Mucha, R., Danowski, D., Mucha, M., Polański, A., Cieślar, G., & Sieroń, A. (2011). Diagnosis of the motion pathologies based on a reduced kinematical data of a gait. Przegląd Elektrotechniczny, 87(12), 173–176.
Tralie, C. (2016). High-dimensional geometry of sliding window embeddings of periodic videos. In 32nd International Symposium on Computational Geometry (SoCG 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
Tralie, C. J., & Berger, M. (2018). Topological eulerian synthesis of slow motion periodic videos. In 2018 25th IEEE International Conference on Image Processing (ICIP) (pp. 3573–3577). IEEE.10.1109/ICIP.2018.8451014
Vejdemo-Johansson, M., Pokorny, F. T., Skraba, P., & Kragic, D. (2015). Cohomological learning of periodic motion. Applicable algebra in engineering, communication and computing, 26(1–2), 5–26.10.1007/s00200-015-0251-x
Venkataraman, V., Ramamurthy, K. N., & Turaga, P. (2016). Persistent homology of attractors for action recognition. In 2016 IEEE international conference on image processing (ICIP) (pp. 4150–4154). IEEE.10.1109/ICIP.2016.7533141
Zago, M., Pacifici, I., Lovecchio, N., Galli, M., Federolf, P. A., & Sforza, C. (2017). Multi-segmental movement patterns reflect juggling complexity and skill level. Human Movement Science, 54, 144–153.10.1016/j.humov.2017.04.01328499158