Have a personal or library account? Click to login
A suitability assessment using an instrumented impact test of the use of selected structural steel grades on the basis of their changes in response to exposure to fire
Bednarek, Z., Kamocka, R. (2006). The heating rate impact on parameters characteristic of steel behaviour under fire conditions, Journal of Civil Engineering and Management, XII/4, 269–275.10.3846/13923730.2006.9636403
Chaouadi, R., Fabry, A. (2002). On the utilization of the instrumented Charpy impact test for characterizing the flow and fracture behavior of reactor pressure vessel steels. In D. François, A. Pineau (Eds.) From Charpy to present impact testing (pp. 103–117), Elsevier Science Ltd. and ESIS.10.1016/S1566-1369(02)80011-5
Haušild, P., Bompard, P., Berdin, C., Prioul, C., Karlik, M. (2002). Influence of ductile tearing on cleavage triggering in ductile-to-brittle transition of A508 steel. In D. François, A. Pineau (Eds.) From Charpy to present impact testing (pp. 79-86), Elsevier Science Ltd. and ESIS.10.1016/S1566-1369(02)80008-5
Knott, J.F. (1992). Micromechanisms of fracture – the role of microstructure. In S. Sedmak, A. Sedmak, D. Ruzic (Eds.) ECF9 Reliability and Structural Integrity of Advances Materials, (pp. 1375–1400), Varna, Bulgaria.
Lin, T., Evans, A.G., Ritchie, R.O. (1987). Stochastic Modeling of the Independent Roles of Particle Size and Grain Size in Transgranular Cleavage Fracture, Metallurgical Transactions A, 18A, 641–651.10.1007/BF02649480
Lin, Y., Yang, W., Tong, Z., Zhang, C., Ning G. (2017). Charpy impact test on A508-3 steel after neutron irradiation, Engineering Failure Analysis, 82, 733–740.10.1016/j.engfailanal.2017.06.032
Maciejewski, K., Sun, Y., Gregory, O., Ghonem, H. (2012). Time – dependent of low carbon steel at elevated temperatures, Materials Science and Engineering A, 534, 147–156.10.1016/j.msea.2011.11.053
Maślak, M. (2012). Badania stali konstrukcyjnej po pożarze w kontekście oceny możliwości jej dalszego użytkowania w elementach nośnych ustrojów budowlanych, Przegląd Budowlany, 6, 48–51.
Maślak, M., Żwirski, G. (2017). Changes in structural steel microstructures following and cooling episodes in fires, Safety & Fire Technique, 48, 34–52.
Peng, P.C., Chi, J.H., Cheng, J.W. (2016). A study on behavior of steel structures subjected to fire using non-destructive testing, Construction and Building Materials, 128, 170–175.10.1016/j.conbuildmat.2016.07.056
Rosenfield, A.R., Shetty, D.K., Skidmore, A.J. (1983). Fractographic observation of cleavage initiation in the ductile-brittle transition region of a reactor-pressure-vessel steel, Metallurgical Transactions A, 14 A, 1934–1937.10.1007/BF02645567
Server, W.L. (2002). Instrumented Charpy Test review and application to structural integrity, In D. François, A. Pineau (Eds.) From Charpy to present impact testing (pp. 205–212), Elsevier Science Ltd. and ESIS.10.1016/S1566-1369(02)80022-X
Stankiewicz, M., Holloway, G., Marshall, A., Zhang, Z., Ślązak, B. (2012). Próba udarności Charpy’ego i parametr Lateral Expansion w ocenie materiałów spawalniczych dla potrzeb kriogeniki, Przegląd Spawalnictwa, 11, 1–7.10.26628/ps.v84i11.313
Tanguy, B., Besson, J., Piques, R., Pineau, A. (2005). Ductile to brittle transition of an A508 steel characterized by Charpy impact test. Part II: modeling of the Charpy transition curve, Engineering Fracture Mechanics, 72, 413–434.
Trilleros, J.A., Mato, S., Huertas, I. (2012). Development of a pilot furnace for testing structural steels under standard fire model. In S.L. Chan, G.P. Shu (Eds.) Proceedings of 7th International Conference: Advances in Steel Structures (pp. 821–830), Nanjing.
Wallin, K., Nevasmaa, P., Planman, T., Valo, M. (2002). Evolution of the Charpy-V test from a quality control test to a materials evaluation tool for structural integrity assessment. In D. François, A. Pineau (Eds.) From Charpy to present impact testing (pp. 57–68), Elsevier Science Ltd. and ESIS.10.1016/S1566-1369(02)80006-1