Have a personal or library account? Click to login
HMM-based phoneme speech recognition system for the control and command of industrial robots Cover

HMM-based phoneme speech recognition system for the control and command of industrial robots

By:
Open Access
|Feb 2021

References

  1. Alifani, F., Purboyo, T.W., Setianingsih, C. (2019). Implementation of Voice Recognition in Disaster Victim Detection Using Hidden Markov Model (HMM) Method. International Seminar on Intelligent Technology and Its Applications (ISITIA).10.1109/ISITIA.2019.8937290
  2. Alim, S.A., Rashid, N.K. (2018). Some Commonly Used Speech Feature Extraction Algorithms.
  3. Ande, S. K., Kuchibotla, M. R., Adavi, B. K. (2020). Robot acquisition, control and interfacing using multimodal feedback. Journal of Ambient Intelligence and Humanized Computing, 1–11.10.1007/s12652-020-01738-0
  4. Bahar, P., Makarov, N., Zeyer, A., Schlüter, R., Ney, H. (2020). Exploring A Zero-Order Direct Hmm Based on Latent Attention for Automatic Speech Recognition. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 7854–7858.10.1109/ICASSP40776.2020.9054545
  5. Baranwal, N., Singh, A. K., & Hellstrom, T. (2019). Fusion of Gesture and Speech for Increased Accuracy in Human Robot Interaction. 24th International Conference on Methods and Models in Automation and Robotics (MMAR).10.1109/MMAR.2019.8864671
  6. Becker, K. (2016). Identifying the Gender of a Voice using Machine Learning. Retrieved from http://www.primaryobjects.com/2016/06/22/identifying-the-gender-of-a-voice-using-machine-learning (access: 29/05/2020).
  7. Bendel, O. (2020). Co-Robots as Care Robots. Preprint arXiv arXiv:2004.04374.
  8. Bongomin, O., Yemane, A., Kembabazi, B., Malanda, C., Mwape, M. C., Mpofu, N. S., Tigalana, D. (2020). The Hype and Disruptive Technologies of Industry 4.0 in Major Industrial Sectors: A State of the Art.10.20944/preprints202006.0007.v1
  9. M., Abdelaziz, A. H., & Kolossa, D. (2016). Twin-HMM-based non-intrusive speech intelligibility prediction. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
  10. Charles J., Vishwas M., Ruixi L. (2020). Improved Robust ASR for Social Robots in Public Spaces. Preprint arXiv:2001.0.04619.
  11. Kennedy, J., Lemaignan, S., Montassier, C., Lavalade, P., Irfan, B., Papadopoulos, F., Senft, E., Belpaeme, T. (2017). Child Speech Recognition in Human-Robot Interaction. Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot Interaction. HRI ’17. ACM/IEEE International Conference on Human-Robot Interaction.10.1145/2909824.3020229
  12. Lakomkin, E., Zamani, M. A., Weber, C., Magg, S., Wermter, S. (2018). On the Robustness of Speech Emotion Recognition for Human-Robot Interaction with Deep Neural Networks. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).10.1109/IROS.2018.8593571
  13. Naik, A. HMM-based phoneme speech recognition system for control and command of industrial robots. Preprint arXiv:2000.01222, 1–23.
  14. Ninh, D. K. (2019). A Speaker-Adaptive HMM-based Vietnamese Text-to-Speech System. 2019 11th International Conference on Knowledge and Systems Engineering (KSE). 11th International Conference on Knowledge and Systems Engineering (KSE).10.1109/KSE.2019.8919326
  15. Novoa, J., Wuth, J., Escudero, J. P., Fredes, J., Mahu, R., Yoma, N. B. (2018). DNN-HMM based automatic speech recognition for HRI scenarios. In Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction (pp. 150-159).10.1145/3171221.3171280
  16. Palaz, D., Magimai-Doss, M., Collobert, R. (2019). End-to-end acoustic modeling using convolutional neural networks for HMM-based automatic speech recognition. Speech Communication, 108, 15–32.10.1016/j.specom.2019.01.004
  17. Sharma, U., Maheshkar, S., Mishra, A. N., Kaushik, R. (2019). Visual Speech Recognition Using Optical Flow and Hidden Markov Model. Wireless Personal Communications, 106(4), 2129–2147.10.1007/s11277-018-5930-z
  18. Ting, W. (2019). An Acoustic Recognition Model for English Speech Based on Improved HMM Algorithm. In 2019 11th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), 729–732.10.1109/ICMTMA.2019.00167
  19. Zhou, W., Schlüter, R., Ney, H. (2020). Full-Sum Decoding for Hybrid HMM based Speech Recognition using LSTM Language Model. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 7834–7838.10.1109/ICASSP40776.2020.9053010
  20. http://geetech.com (access: 29/05/2020).
  21. http://threegraphs.com (access: 29/05/2020).
  22. http://www.creately.com (access: 29/05/2020)
DOI: https://doi.org/10.37705/TechTrans/e2021002 | Journal eISSN: 2353-737X | Journal ISSN: 0011-4561
Language: English
Submitted on: Jun 1, 2020
Accepted on: Feb 5, 2021
Published on: Feb 5, 2021
Published by: Cracow University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2021 Adwait Naik, published by Cracow University of Technology
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.