Aysan, H., Edebali, S., Ozdemir, C., Karakaya, M.C., Karakaya, N. (2016). Use of chabazite, a naturally abundant zeolite, for the investigation of the adsorption kinetics and mechanism of methylene blue dye. Microporous and Mesoporous Materials, 235, 78–86. https://doi.org/10.1016/j.micromeso.2016.08.00710.1016/j.micromeso.2016.08.007
Christidis, G.E., Moraetis, D., Keheyanb, E., Akhalbedashvili, L., Kekelidzec N., Gevorkyand R., Yeritsyane H., Sargsyan H. (2003). Chemical and thermal modification of natural HEU-type zeolitic materials from Armenia, Georgia and Greece. Applied Clay Science, 24, 79–91. https://doi.org/10.1016/S0169-1317(03)00150-910.1016/S0169-1317(03)00150-9
Cundy, C.S., Cox, P.A. (2003). The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time. Chem. Rev.,103, 663–701. https://doi.org/10.1021/cr020060i10.1021/cr020060i
Czekaj, I., Sobuś, N. (2018c). Nano-design of zeolite-based catalysts for selective conversion of biomass into chemicals, Wydawnictwo PK, Kraków 2018. https://repozytorium.biblos.pk.edu.pl/resources/42981
Dapsens, P.Y., Mondelli, C., Perez-Ramirez, J. (2015). Design of Lewis-acid centres in zeolitic matrices for the conversion of renewable. Chem. Soc. Rev., 44, 7025–7043. https://doi.org/10.1039/C5CS00028A10.1039/C5CS00028A
Ennaert, T., Van Aelst, J., Dijkmans, J., De Clercq, R., Schutyser, W., Dusselier, M., Verboekend, D., Sels B.F. (2016). Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chem. Soc. Rev., 45, 584-611. https://doi.org/10.1039/C5CS00859J10.1039/C5CS00859J
Eprikashvili, L., Zautashvili, M., Kordzakhia, T., Pirtskhalava, N., Dzagania, M., Rubashvili, I., Tsitsishvili, V. (2016). Intensification of bioproductivity of agricultural cultures by adding natural zeolites and brown coals into soils. Annals of Agrarian Science, 14, 67–71. https://doi.org/10.1016/j.aasci.2016.05.00410.1016/j.aasci.2016.05.004
Figueroa-Torres, G.M., Certucha-Barragán, M.T., Acedo-Félix, E., Monge-Amaya, O., Almendariz-Tapia, F.J., Gasca-Estefanía, L.A. (2016). Kinetic studies of heavy metals biosorption by acidogenic biomass immobilized in clinoptilolite. Journal of the Taiwan Institute of Chemical Engineers, 61, 241–246. https://doi.org/10.1016/j.jtice.2015.12.01810.1016/j.jtice.2015.12.018
Gatta, G.D., Cappelletti, P., Rotiroti, N., Slebodnick, C., Rinaldi, R. (2009). New insights into the crystal structure and crystal chemistry of the zeolite phillipsite. American Mineralogist, 94, 190–199. https://doi.org/10.2138/am.2009.303210.2138/am.2009.3032
Ghobarkar, H., Schӓf, O., Massiani, Y., Knauth, P. (2003). The Reconstruction of Natural Zeolites. Springer Science+Business Media Dordrecht 2003.10.1007/978-1-4419-9142-3
Harikishore, K. R. D., Vijayaraghavan, K., Kim, J.A., Yeoung-Sang, Y. (2017) Valorisation of post-sorption materials: Opportunities, strategies, and challenges, Advances in Colloid and Interface Science, 242, 35–58. https://doi.org/10.1016/j.cis.2016.12.00210.1016/j.cis.2016.12.002
Karadag, D., Akgul, E., Tok, S., Erturk, F., Kaya, M.A., Turan, M. (2007). Basic and Reactive Dye Removal Using Natural and Modified Zeolites. Journal of Chemical and Engineering Data, 52, 2436–2441. https://doi.org/10.1021/je700372610.1021/je7003726
Kesraoui-Ouki, S., Cheeseman, C.R., Perry R. (1994). Natural Zeolite Utilisation in Pollution Control: A Review of Applications to Metals’ Effluents. J. Chem. Tech. Biorechnol., 59, 121–126. https://doi.org/10.1002/jctb.28059020210.1002/jctb.280590202
Korkuna, O., Leboda, R., Skubiszewska-Zięba, J., Vrublevs’ka, T., Gun’ko, V.M., Ryczkowski, J. (2006). Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite. Microporous and Mesoporous Materials, 87, 243–254. https://doi.org/10.1016/j.micromeso.2005.08.00210.1016/j.micromeso.2005.08.002
Majdan, M., Pikus, S., Rzączyńska, Z., Iwan, M., Maryuk, O., Kwiatkowski, R., Skrzypek, H. (2006). Characteristics of chabazite modified by hexadecyltrimethylammonium bromide and of its affinity toward chromates. Journal of Molecular Structure, 791, 53–60. https://doi.org/10.1016/j.molstruc.2005.12.04310.1016/j.molstruc.2005.12.043
Marakatti, V.S., Halgeri, A.B. (2015). Metal ion-exchanged zeolites as highly active solid acid catalysts for the green synthesis of glycerol carbonate from glycerol, RSC Adv., 5, 14286–14293. https://doi.org/10.1039/C4RA16052E10.1039/C4RA16052E
Mess, F., Stoops, G., Van Ranst, E., Paepe, R., Van Overloop, E. (2005). The nature of zeolite occurrences in deposits of the Olduvai Basin, Northern Tanzania. Clays and Clay Minerals, 6, 659–673. http://hdl.handle.net/1854/LU-41285710.1346/CCMN.2005.0530612
Mintova, S., Barrier, N., (2016). Syntheses of Zeolitic Materials Third Revised Edition, Published on behalf of the Synthesis Commission of the International Zeolite Association 2016.
Pavlovic, J., Popova, M., Mihalyi, R.M., Mazaj, M., Mali, G., J. Kovač, J., H. Lazarova, H., Rajic, N. (2019). Catalytic activity of SnO2- and SO4/SnO2-containing clinoptilolite in the esterification of levulinic acid. Microporous and Mesoporous Materials, 279, 10–18. https://doi.org/10.1016/j.micromeso.2018.12.00910.1016/j.micromeso.2018.12.009
Ramachandran, C.E., Williams, B.A., van Bokhoven, J.A., Miller, J.T. (2005). Observation of a compensation relation for n-hexane adsorption in zeolites with different structures: implications for catalytic activity. Journal of Catalysis, 233, 100–108. https://doi.org/10.1016/j.jcat.2005.04.01710.1016/j.jcat.2005.04.017
Reháková, M., Čuvanová, S., Dzivák, M., Rimár, J., Gaval’ová, Z. (2004). Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type. Current Opinion in Solid State and Materials Science, 8, 397–404. https://doi.org/10.1016/j.cossms.2005.04.00410.1016/j.cossms.2005.04.004
Sanhueza, V., Kelm, U., Cid, R. (2002). Synthesis of mordenite from diatomite: a case of zeolite synthesis from natural material. J. Chem. Technol Biotechnol., 78, 485-488. https://doi.org/10.1002/jctb.80110.1002/jctb.801
Serri, C., de Gennaro, B., Catalanotti, L., Cappelletti, P., Langella, A., Mercurio, M., Mayol, L., Biondi, M. (2016). Surfactant-modified phillipsite and chabazite as novel excipients for pharmaceutical applications?, Microporous and Mesoporous Materials, 224, 143–148. https://doi.org/10.1016/j.micromeso.2015.11.02310.1016/j.micromeso.2015.11.023
Stephenson, D.J., Fairchild, C.I., Buchan, R.M., Dakins, M.E. (1999). A Fiber Characterization of the Natural Zeolite, Mordenite: A Potential Inhalation Health Hazard, Aerosol Science and Technology, 30, 467–476. https://doi.org/10.1080/02786829930450710.1080/027868299304507
Sun, Z., Barta, K. (2018). Cleave and couple: toward fully sustainable catalytic conversion of lignocellulose to value added building blocks and fuels. Chem. Commun., 54, 7725–7745. https://doi.org/10.1039/C8CC02937G10.1039/C8CC02937G
Watson, G.C., Jensen, N.K., Rufford, T.E., Chan, I., May, E.F. (2012). Volumetric Adsorption Measurements of N2, CO2, CH4, and a CO2 + CH4 Mixture on a Natural Chabazite from (5 to 3000) kPa. J. Chem. Eng. Data, 57, 93–101. https://doi.org/10.1021/je200812y10.1021/je200812y
Xu, R., Pang, W., Yu, J., Huo, Q., Chen, J. (2007). Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure. Singapore: John Wiley & Sons.10.1002/9780470822371