Have a personal or library account? Click to login

The impact of mechanical pretreatment on biogas production from waste materials of the chemical and brewing industries

Open Access
|Nov 2020

References

  1. Abraham, A., Mathew, A. K., Park, H., Choi, O., Sindhu, R., Parameswaran, B., Ashok, P., Jung H. P, Sang, B. I. (2020). Pretreatment strategies for enhanced biogas production from lignocellulosic biomass. Bioresource Technology, 301, 122725. https://doi.org/10.1016/j.biortech.2019.12272510.1016/j.biortech.2019.12272531958690
  2. Angelidaki, I., Ahring, B. K. (2000). Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure. Water Science and Technology, 41(3), 189–194. https://doi.org/10.2166/wst.2000.007110.2166/wst.2000.0071
  3. Bernat, K., Cydzik-Kwiatkowska, A., Zielińska, M., Wojnowska-Baryła, I., Wersocka, J. (2019a). Valorisation of the selectively collected organic fractions of municipal solid waste in anaerobic digestion. Biochemical Engineering Journal, 148, 87–96. https://doi.org/10.1016/j.bej.2019.05.00310.1016/j.bej.2019.05.003
  4. Bernat, K., Zielińska, M., Kulikowska, D., Cydzik-Kwiatkowska, A., Wojnowska-Baryła, I., Waszczyłko-Miłkowska, B., Piotrowicz, B. (2019b). The effect of the excess sludge pretreatment on biogas productivity. Technical Sciences, 1(22), 75–86. https://doi.org/10.31648/ts.434910.31648/ts.4349
  5. Bruni, E., Jensen, A. P., Angelidaki, I. (2010). Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production. Bioresource Technology, 101(22), 8713–8717. https://doi.org/10.1016/j.biortech.2010.06.10810.1016/j.biortech.2010.06.10820638274
  6. Buranov, A. U., Mazza, G. (2008). Lignin in straw of herbaceous crops. Industrial Crops and Products, 28(3), 237–259. https://doi.org/10.1016/j.indcrop.2008.03.00810.1016/j.indcrop.2008.03.008
  7. De Bere, L. (2000). Anaerobic digestion of solid waste: state-of-the-art. Water Science and Technology, 41(3), 283–290. https://doi.org/10.2166/wst.2000.008210.2166/wst.2000.0082
  8. De la Rubia, M. A., Fernández-Cegrí, V., Raposo, F., Borja, R. (2011). Influence of particle size and chemical composition on the performance and kinetics of anaerobic digestion process of sunflower oil cake in batch mode. Biochemical Engineering Journal, 58, 162–167. https://doi.org/10.1016/j.bej.2011.09.01010.1016/j.bej.2011.09.010
  9. Dias, T., Fragoso, R., Duarte, E. (2014). Anaerobic co-digestion of dairy cattle manure and pear waste. Bioresource Technology, 164, 420–423. https://doi.org/10.1016/j.biortech.2014.04.11010.1016/j.biortech.2014.04.11024865319
  10. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. (2009). Official Journal of the European Union, 5, 2009.
  11. Frigon, J. C., Mehta, P., Guiot, S. R. (2012). Impact of mechanical, chemical and enzymatic pre-treatments on the methane yield from the anaerobic digestion of switchgrass. Biomass and Bioenergy, 36, 1–11. https://doi.org/10.1016/j.biombioe.2011.02.01310.1016/j.biombioe.2011.02.013
  12. Gao, R., Yuan, X., Zhu, W., Wang, X., Chen, S., Cheng, X., Cui, Z. (2012). Methane yield through anaerobic digestion for various maize varieties in China. Bioresource Technology, 118, 611–614. https://doi.org/10.1016/j.biortech.2012.05.05110.1016/j.biortech.2012.05.051
  13. Hartmann, H., Angelidaki, I., Ahring, B. K. (2000). Increase of anaerobic degradation of particulate organic matter in full-scale biogas plants by mechanical maceration. Water Science and Technology, 41(3), 145–153. https://doi.org/10.2166/wst.2000.006610.2166/wst.2000.0066
  14. Heerenklage, J., Stegmann, R. (2005). Analytical Methods for the Determination of the Biological Stability of Waste Samples. Proceedings Tenth International Waste Management and Landfill Symposium. Italy: S. Margherita di Pula, Cagliari.
  15. Karimi, K., Taherzadeh, M. J. (2016). A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Bioresource Technology, 200, 1008–1018. https://doi.org/10.1016/j.biortech.2015.11.02210.1016/j.biortech.2015.11.022
  16. Kowalska, A. (2017). Charakterystyka roślin energetycznych jako potencjalnego surowca do produkcji biogazu. Eliksir, 1(5), 11–15.
  17. Kratky, L., Jirout, T. (2011). Biomass size reduction machines for enhancing biogas production. Chemical Engineering & Technology, 34(3), 391–399. https://doi.org/10.1002/ceat.20100035710.1002/ceat.201000357
  18. Krzyżaniak, M., Stolarski, M. J., Waliszewska, B., Szczukowski, S., Tworkowski, J., Załuski, D., Śnieg, M. (2014). Willow biomass as feedstock for an integrated multi-product biorefinery. Industrial Crops and Products, 58, 230–237. https://doi.org/10.1016/j.indcrop.2014.04.03310.1016/j.indcrop.2014.04.033
  19. Kumar, P., Barrett, D. M., Delwiche, M. J., Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48(8), 3713–3729. https://doi.org/10.1021/ie801542g10.1021/ie801542g
  20. Ladisch, M. R., Lin, K. W., Voloch, M., Tsao, G. T. (1983). Process considerations in the enzymatic hydrolysis of biomass. Enzyme and Microbial Technology, 5(2), 82–102.10.1016/0141-0229(83)90042-X
  21. Lechner, B. E., Papinutti, V. L. (2006). Production of lignocellulosic enzymes during growth and fruiting of the edible fungus Lentinus tigrinus on wheat straw. Process Biochemistry, 41(3), 594–598. https://doi.org/10.1016/j.procbio.2005.08.00410.1016/j.procbio.2005.08.004
  22. Li, F., Zhang, M., Guo, K., Hu, Z., Zhang, R., Feng, Y., Yi, X., Zou, W., Wang, L., Wu C., Tian, J. (2015). High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnology Journal, 13(4), 514–525. https://doi.org/10.1111/pbi.1227610.1111/pbi.1227625418842
  23. Monlau, F., Barakat, A., Trably, E., Dumas, C., Steyer, J. P., Carrère, H. (2013). Lignocellulosic materials into biohydrogen and biomethane: impact of structural features and pretreatment. Critical Reviews in Environmental Science and Technology, 43(3), 260–322. https://doi.org/10.1080/10643389.2011.60425810.1080/10643389.2011.604258
  24. Mshandete, A., Björnsson, L., Kivaisi, A. K., Rubindamayugi, M. S., Mattiasson, B. (2006). Effect of particle size on biogas yield from sisal fibre waste. Renewable Energy, 31(14), 2385–2392. https://doi.org/10.1016/j.renene.2005.10.01510.1016/j.renene.2005.10.015
  25. Nichols, C. E. (2004). Overview of anaerobic digestion technologies in Europe. BioCycle, 45(1), 47–47.
  26. Oslaj, M., Mursec, B., Vindis, P. (2010). Biogas production from maize hybrids. Biomass and Bioenergy, 34(11), 1538–1545. https://doi.org/10.1016/j.biombioe.2010.04.01610.1016/j.biombioe.2010.04.016
  27. Pakarinen, O. M., Tähti, H. P., Rintala, J. A. (2009). One-stage H2 and CH4 and two-stage H2+CH4 production from grass silage and from solid and liquid fractions of NaOH pre-treated grass silage. Biomass and Bioenergy, 33(10), 1419–1427. https://doi.org/10.1016/j.biombioe.2009.06.00610.1016/j.biombioe.2009.06.006
  28. Rasi, S., Veijanen, A., Rintala, J. (2007). Trace compounds of biogas from different biogas production plants. Energy, 32(8), 1375–1380. https://doi.org/10.1016/j.energy.2006.10.01810.1016/j.energy.2006.10.018
  29. Robertson, J. A., I’Anson, K. J., Treimo, J., Faulds, C. B., Brocklehurst, T. F., Eijsink, V. G., Waldron, K. W. (2010). Profiling brewers’ spent grain for composition and microbial ecology at the site of production. LWT-Food Science and Technology, 43(6), 890–896. https://doi.org/10.1016/j.lwt.2010.01.01910.1016/j.lwt.2010.01.019
  30. Saxena, R. C., Adhikari, D. K., Goyal, H. B. (2009). Biomass-based energy fuel through biochemical routes: a review. Renewable and Sustainable Energy Reviews, 13(1), 167–178. https://doi.org/10.1016/j.rser.2007.07.01110.1016/j.rser.2007.07.011
  31. Thomsen, S. T., Spliid, H., Østergård, H. (2014). Statistical prediction of biomethane potentials based on the composition of lignocellulosic biomass. Bioresource Technology, 154, 80–86. https://doi.org/10.1016/j.biortech.2013.12.02910.1016/j.biortech.2013.12.02924384313
  32. Tišma, M., Jurić, A., Bucić-Kojić, A., Panjičko, M., Planinić, M. (2018). Biovalorization of brewers’ spent grain for the production of laccase and polyphenols. Journal of the Institute of Brewing, 124(2), 182–186. https://doi.org/10.1002/jib.47910.1002/jib.479
  33. Tsapekos, P., Kougias, P. G., Angelidaki, I. (2015). Biogas production from ensiled meadow grass; effect of mechanical pretreatments and rapid determination of substrate biodegradability via physicochemical methods. Bioresource Technology, 182, 329–335. https://doi.org/10.1016/j.biortech.2015.02.02510.1016/j.biortech.2015.02.02525710572
  34. Wikberg, H., Grönqvist, S., Niemi, P., Mikkelson, A., Siika-Aho, M., Kanerva, H., Käsper, A., Tamminen, T. (2017). Hydrothermal treatment followed by enzymatic hydrolysis and hydrothermal carbonization as means to valorise agro-and forest-based biomass residues. Bioresource Technology, 235, 70–78. https://doi.org/10.1016/j.biortech.2017.03.09510.1016/j.biortech.2017.03.09528364635
  35. Yoshida, H., Tokumoto, H., Ishii, K., Ishii, R. (2009). Efficient, high-speed methane fermentation for sewage sludge using subcritical water hydrolysis as pretreatment. Bioresource Technology, 100(12), 2933–2939. https://doi.org/10.1016/j.biortech.2009.01.04710.1016/j.biortech.2009.01.04719254834
  36. Zhong, W., Zhang, Z., Qiao, W., Fu, P., Liu, M. (2011). Comparison of chemical and biological pretreatment of corn straw for biogas production by anaerobic digestion. Renewable Energy, 36(6), 1875–1879. https://doi.org/10.1016/j.renene.2010.12.02010.1016/j.renene.2010.12.020
  37. Zhu, J., Wan, C., Li, Y. (2010). Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. Bioresource Technology, 101(19), 7523–7528. https://doi.org/10.1016/j.biortech.2010.04.06010.1016/j.biortech.2010.04.06020494572
  38. Ziemiński, K., Kowalska-Wentel, M. (2017). Effect of different sugar beet pulp pretreatments on biogas production efficiency. Applied Biochemistry and Biotechnology, 181(3), 1211–1227. https://doi.org/10.1007/s12010-016-2279-110.1007/s12010-016-2279-1532586627766539
DOI: https://doi.org/10.37705/TechTrans/e2020037 | Journal eISSN: 2353-737X | Journal ISSN: 0011-4561
Language: English
Submitted on: Mar 25, 2020
Accepted on: Nov 5, 2020
Published on: Nov 18, 2020
Published by: Cracow University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2020 Katarzyna Bernat, Magdalena Zaborowska, Katarzyna Goryszewska, published by Cracow University of Technology
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.