Andrew L. Maas, R. E. (2011). Learning Word Vectors for Sentiment Analysis. 49th annual meeting of the association for computational linguistics: Human language technologies, 142–150.
Cox, M. A., & Cox, T. F. (2008). Multidimensional scaling. In Handbook of data visualization. In Handbook of Data Visualization (pp. 315–347). Berlin, Heidelberg: Springer.
D. Tang, F. W. (2014). Learning Sentiment-Specific Word Embedding. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, 1, 1555–1565.
Dos Santos, C. N., & Gatti, M. (2014). Deep Convolutional Neural Networks for. Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, 69–78.
Jifara, W., Jiang, F., Rho, S., Cheng, M., & Liu, S. (2019). Medical image denoising using convolutional neural network: a residual learning approach. The Journal of Supercomputing, 704–718.10.1007/s11227-017-2080-0
Krouska, A., Troussas, C., & Virvou, M. (2016). The effect of preprocessing techniques on Twitter sentiment analysis. 2016 7th International Conference on Information, Intelligence, Systems & Applications (IISA), IEEE, 1–6.10.1109/IISA.2016.7785373
Mattila, M., & Salman, H. (2018). Analysing Social Media Marketing on Twitter using Sentiment Analysis. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229787 (access: 20/06/2020).
Miazga, J., & Hachaj, T. (n.d.). Datasets and source code used in this article. Retrieved from https://github.com/JusMia/sentimentanalysis_ML (August 20, 2020).
Ramteke, J., Shah, S., Godhia, D., & Shaikh, A. (2016). Election result prediction using Twitter sentiment analysis. 2016 international conference on inventive computation technologies (ICICT), Vol. 1, IEEE, 1–5.10.1109/INVENTIVE.2016.7823280
Salminen, J., Yoganathan, V., Corporan, J., Jansen, B. J., & Jung, S.-G. (2019). Machine learning approach to auto-tagging online content for content marketing efficiency: A comparative analysis between methods and content type. Journal of Business Research, 203–217.10.1016/j.jbusres.2019.04.018
Santra, A. K. (2012). Genetic Algorithm and Confusion Matrix for Document Clustering. International Journal of Computer Science Issues (IJCSI), 9(1), 322–328.
Sebastiani, F. (2002). Consiglio Nazionale Delle Ricerche. Machine learning in automated text categorization. ACM Computing Surveys, 34, 1–47.10.1145/505282.505283
Shimodaira, H., Noma, K.-I., Nakai, M., & Sagayama, S. (2002). Dynamic Time-Alignment Kernel in Support Vector Machine. Advances in neural information processing systems, 21–928.
Tripathy, A., Agrawal, A., & Rath, S. K. (2016). Classification of sentiment reviews using n-gram machine learning approach. Expert Systems with Applications, 57, 117–126.10.1016/j.eswa.2016.03.028
Trsteniak, B., Mikac, S., & Donko, D. (2014). KNN with TF-IDF based Framework for Text Categorization. Procedia Engineering, 69, 1356–1364.10.1016/j.proeng.2014.03.129
Wang, X., Zhang, C., Ji, Y., Sun, L., Wu, L., & Bao, Z. (2013). A depression detection model based on sentiment analysis in micro-blog social network. Pacific- -Asia Conference on Knowledge Discovery and Data Mining, 201–213.10.1007/978-3-642-40319-4_18
Yan, B. Y. (2017). Microblog sentiment classification using parallel SVM in apache spark. 2017 IEEE International Congress on Big Data (BigData Congress), IEEE, 282–288.10.1109/BigDataCongress.2017.43