References
- Agarwal, B., & Mittal, N. (2016). Machine Learning Approach for Sentiment Analysis. In Prominent Feature Extraction for Sentiment Analysis (pp. 21–45). Springer, Cham.10.1007/978-3-319-25343-5_3
- Andrew L. Maas, R. E. (2011). Learning Word Vectors for Sentiment Analysis. 49th annual meeting of the association for computational linguistics: Human language technologies, 142–150.
- Borg, I., & Groenen, P. J. (2005). Modern multidimensional scaling: Theory and applications. Springer Science & Business Media.
- Burrell, J. (2016). How the machine ‘thinks’: Understanding. Big Data & Society, 1–12. http://doi.org/10.1177/205395171562251210.1177/2053951715622512
- Cox, M. A., & Cox, T. F. (2008). Multidimensional scaling. In Handbook of data visualization. In Handbook of Data Visualization (pp. 315–347). Berlin, Heidelberg: Springer.
- D. Tang, F. W. (2014). Learning Sentiment-Specific Word Embedding. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, 1, 1555–1565.
- Dos Santos, C. N., & Gatti, M. (2014). Deep Convolutional Neural Networks for. Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, 69–78.
- Jifara, W., Jiang, F., Rho, S., Cheng, M., & Liu, S. (2019). Medical image denoising using convolutional neural network: a residual learning approach. The Journal of Supercomputing, 704–718.10.1007/s11227-017-2080-0
- Krouska, A., Troussas, C., & Virvou, M. (2016). The effect of preprocessing techniques on Twitter sentiment analysis. 2016 7th International Conference on Information, Intelligence, Systems & Applications (IISA), IEEE, 1–6.10.1109/IISA.2016.7785373
- Kruskal, J. B. (1964). Nonmetric multidimensional scaling: A numerical approach. Psychometrika.10.1007/BF02289694
- Kruskal, J. B. (1978). Multidimensional scaling. Sage.10.4135/9781412985130
- Mattila, M., & Salman, H. (2018). Analysing Social Media Marketing on Twitter using Sentiment Analysis. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229787 (access: 20/06/2020).
- Miazga, J., & Hachaj, T. (n.d.). Datasets and source code used in this article. Retrieved from https://github.com/JusMia/sentimentanalysis_ML (August 20, 2020).
- Ramteke, J., Shah, S., Godhia, D., & Shaikh, A. (2016). Election result prediction using Twitter sentiment analysis. 2016 international conference on inventive computation technologies (ICICT), Vol. 1, IEEE, 1–5.10.1109/INVENTIVE.2016.7823280
- Salminen, J., Yoganathan, V., Corporan, J., Jansen, B. J., & Jung, S.-G. (2019). Machine learning approach to auto-tagging online content for content marketing efficiency: A comparative analysis between methods and content type. Journal of Business Research, 203–217.10.1016/j.jbusres.2019.04.018
- Santra, A. K. (2012). Genetic Algorithm and Confusion Matrix for Document Clustering. International Journal of Computer Science Issues (IJCSI), 9(1), 322–328.
- Sebastiani, F. (2002). Consiglio Nazionale Delle Ricerche. Machine learning in automated text categorization. ACM Computing Surveys, 34, 1–47.10.1145/505282.505283
- Shimodaira, H., Noma, K.-I., Nakai, M., & Sagayama, S. (2002). Dynamic Time-Alignment Kernel in Support Vector Machine. Advances in neural information processing systems, 21–928.
- Soucy, P. &. (2005, July). Beyond TFIDF weighting for text categorization in the vector space model. IJCAI, 5, 1130–1135.
- Tripathy, A., Agrawal, A., & Rath, S. K. (2016). Classification of sentiment reviews using n-gram machine learning approach. Expert Systems with Applications, 57, 117–126.10.1016/j.eswa.2016.03.028
- Trsteniak, B., Mikac, S., & Donko, D. (2014). KNN with TF-IDF based Framework for Text Categorization. Procedia Engineering, 69, 1356–1364.10.1016/j.proeng.2014.03.129
- Wang, X., Zhang, C., Ji, Y., Sun, L., Wu, L., & Bao, Z. (2013). A depression detection model based on sentiment analysis in micro-blog social network. Pacific- -Asia Conference on Knowledge Discovery and Data Mining, 201–213.10.1007/978-3-642-40319-4_18
- Yan, B. Y. (2017). Microblog sentiment classification using parallel SVM in apache spark. 2017 IEEE International Congress on Big Data (BigData Congress), IEEE, 282–288.10.1109/BigDataCongress.2017.43