Have a personal or library account? Click to login

The zero-sum constant, the Davenport constant and their analogues

Open Access
|Sep 2020

References

  1. Alford, W.R., Granville, A. and Pomerance, C. (1994). There are infinitely many Carmichael numbers. Annals of Math., 140(3), 703–722.10.2307/2118576
  2. Alon, N. and Dubiner, M. (1995). A lattice point problem and additive number theory. Combinatorica, 15, 301–309.10.1007/BF01299737
  3. Balasubramanian, R., Bhowmik, G. (2006). Upper Bounds for the Davenport Constant. Retrieved from https://hal.atchives-ouvertes.fr/hal-00016890/document (date of access: 2020/04/21).
  4. Bass, J. (2007). Improving the Erdös-Ginzburg-Ziv theorem for some non-abelian groups. J. Number Theory, 126, 217–236.10.1016/j.jnt.2006.10.020
  5. Caro, Y. (1996). Remarks on a zero-sum theorem. J. Comb. Theory, Ser. A, 76, 315–322.10.1006/jcta.1996.0108
  6. Chintamani, M.N., Moriya, B.K., Gao, W.D., Paul, P., and Thangadurai, R. (2012). New upper bounds for the Davenport and the Erdös-Ginzburg-Ziv constants. Archiv der Mathematik., 98(2), 133–142.10.1007/s00013-011-0345-z
  7. Delorme, Ch., Ordaz, O., Quiroz, D. (2001). Some remarks on Davenport constant. Discrete Math., 237, 119–128.10.1016/S0012-365X(00)00365-4
  8. Dimitrov, V. (2007). Zero-sum problems in finite groups, under the direction of Pavlo Pylyavskyy, MIT. Retrieved from https://web.mit.edu/rsi/www/pdfs/papers/2003/2003-vessel.pdf (date of access: 2020/04/21).
  9. Edel, Y., Elsholtz, Ch., Geroldinger, A., Kubertin, S., Rackham, L. (2007). Zero-sum problems in finite abelian groups and affine caps. Quart. J. Math., 58, 159–186.10.1093/qmath/ham003
  10. Fan, Y., Gao, W.D., Zhong, Q. (2011). On the Erdös-Ginzburg-Ziv constant of finite abelian groups of high rank. J. Number Theory, 131, 1864–1874.10.1016/j.jnt.2011.02.017
  11. Freeze, M., Schmid, W.A. (2010). Remarks on a generalization of the Davenport constant. Discrete Math, 310, 3373–3389.10.1016/j.disc.2010.07.028
  12. Gao, W.D. (1994). Some problems in additive group theory and additive number theory (Thesis). Chengdu: Sichuan University.
  13. Gao, W.D. (1995). A combinatorial problem on finite groups. Acta Math. SINCA, 38, 395–399.
  14. Gao, W.D. (1996). A Combinatorial Problem on Finite abelian Groups. J. Number Theory, 58, 100–103.10.1006/jnth.1996.0067
  15. Gao, W.D., Geroldinger, A. (2006). Zero-sum problems in finite abelian groups: a survey. Expo. Math., 24, 337–369.10.1016/j.exmath.2006.07.002
  16. Geroldinger, A., Halter-Koch, F. (2006). Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory. Pure and Applied Mathematics, 278. Boca Raton: Chapman & Hall/CRC.10.1201/9781420003208
  17. Geroldinger, A., Schneider, R. (1992). On Davenport’s constant. Journal of Combinatorial Theory, Series A, 61(1), 147–152.10.1016/0097-3165(92)90061-X
  18. Geroldinger, A., Ruzsa, I. (2009). Combinatorial Number Theory and Additive Group Theory. Advanced Courses in Mathematics CRM Barcelona. Basel: Birkhäuser.10.1007/978-3-7643-8962-8
  19. Girard, B. (2018). An asymptotically tight bound for the Davenport constant. J. Ec. Polytech. Math., 5, 605–611.10.5802/jep.79
  20. Girard, B., Schmid, W.A. (2019). Direct zero-sum problems for certain groups of rank three. J. Number Theory, 197, 297–316.10.1016/j.jnt.2018.08.016
  21. Grynkiewich, D.J. (2013). Structural Additive Theory. Developments in Mathematics 30. Cham: Springer.10.1007/978-3-319-00416-7
  22. Halter-Koch, F. (1992). A generalization of Davenport’s constant and its arithmetical applications. Colloq. Math., 63(2), 203–210.10.4064/cm-63-2-203-210
  23. Han, D. (2015). The Erdös-Ginzburg-Ziv Theorem for finite nilpotent groups. Archiv Math., 104, 325–322.10.1007/s00013-015-0739-4
  24. Han, D., Zhang, H. (2019). The Erdös-Ginzburg-Ziv Theorem and Noether number for Cm⋉ϕCmn. J. Number Theory, 198, 159–175.10.1016/j.jnt.2018.10.007
  25. Hamidoune, Y. (1996). On weighted sums in abelian groups. Discrete Math., 162, 127–132.10.1016/0012-365X(95)00281-Z
  26. Harborth, H. (1973). Ein Extremalproblem für Gitterpunkte. J. Reine Angew. Math., 262, 356–360.
  27. Oh, J.S. and Zhong, Q. (2019). On Erdös-Ginzburg-Ziv inverse theorems for Dihedral and Dicyclic groups, to appear in the Israel Journal of Mathematics. Retrieved from https://arxiv.org/abs/1904.13171 (date of access: 2020/04/21).
  28. Olson, J.E. (1969a). A combinatorial problem on finite abelian groups I. J. Number Theory 1, 8–10.10.1016/0022-314X(69)90021-3
  29. Olson, J.E. (1969b). A combinatorial problem on finite abelian groups II. J. Number Theory 1, 195–199.10.1016/0022-314X(69)90037-7
  30. Reiher, Ch. (2007). On Kemnitz’s conjecture concerning lattice-points in the plane. The Ramanujan Journal., 13, 333–337.10.1007/s11139-006-0256-y
  31. Rogers, K. (1963). A combinatorial problem in abelian groups. Proc. Cambridge Philos. Soc., 59, 559–562.10.1017/S0305004100037221
  32. Schmid, W.A. (2011). The inverse problem associated to the Davenport constant for C2⊕C2⊕C2n, and applications to the arithmetical characterization of class groups. Electron. J. Combin., 18(1), 1–42.10.37236/520
  33. Sheikh, A. (2017). The Davenport Constant of Finite Abelian Groups (Thesis). London: University of London.
DOI: https://doi.org/10.37705/TechTrans/e2020027 | Journal eISSN: 2353-737X | Journal ISSN: 0011-4561
Language: English
Submitted on: Feb 24, 2020
Accepted on: Sep 3, 2020
Published on: Sep 11, 2020
Published by: Cracow University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2020 Maciej Zakarczemny, published by Cracow University of Technology
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.