Have a personal or library account? Click to login

A method for the solution of the homogeneous inventory-production optimisation problem

Open Access
|Jun 2020

References

  1. Al-Khenhairi A. (2010). Optimal control of a production inventory system with generalized exponential distributed deterioration. Journal of Mathematical Sciences: Advances and Applications, 4(2), 395–411.
  2. Baten A., Kamil A. (2011). Optimal Production Control in Stochastic Manufacturing Systems with Degenerate Demand. East Asian Journal on Applied Mathematics, 1(1), 89–96.10.4208/eajam.190609.190510a
  3. Baten A., Kamil A. (2009). Analysis of inventory-production systems with Weibull distributed deterioration. International Journal of Physical Sciences, 4(11), 676–682.
  4. Baten A., Kamil A. (2010). Optimal control of a production inventory system with generalized Pareto distributed deterioration items. Journal of Applied Sciences, 10(2), 116–123.10.3923/jas.2010.116.123
  5. Bayındıra Z.P., Birbilb S.I., Frenk J.B.G. (2007). A deterministic inventory/production model with general inventory cost rate function and piecewise linear concave production costs. European Journal of Operational Research, 179, 114–123.10.1016/j.ejor.2006.03.026
  6. Bensoussan A. (2011). Dynamic programming and inventory control. Amsterdam: IOS Press.
  7. Bhowmick J., Samanta G.P. (2011). A Deterministic Inventory Model of Deteriorating Items with Two Rates of Production, Shortages, and Variable Production Cycle. International Scholarly Research Network ISRN Applied Mathematics, ID 657464.10.5402/2011/657464
  8. Bounkhel M., Tadj L., Benhadid Y. (2005). Optimal control of a production system with inventory-level-dependent demand. Applied Mathematics E-Notes, 5, 36–43.
  9. Chaudhary K., Singh Y., Jha J. (2013). Optimal Control Policy of a Production and Inventory System for multi-product in Segment Market. Mathematica, 25, 29–46.
  10. El-Gohary A., Elsayed A. (2008). Optimal Control of a Multi-Item Inventory Model, International Mathematical Forum. 3(27), 1295–1312.
  11. Emamverdi G.A., Karimi M.S., Shafiee M. (2011). Application of Optimal Control Theory to Adjust the Production Rate of Deteriorating Inventory System. Middle-East Journal of Scientific Research, 10(4), 526–531.
  12. Olanrele O., Kamorudeen A., Adio T.A. (2013). Application of Dynamic Programming Model to Production Planning, in an Animal Feedmills. Industrial Engineering Letters, 3(5), 9–17.
  13. Rad M., Khoshalhan F. (2011). An integrated production-inventory model with backorder and lot for Lot Policy. International Journal of Industrial Engineering & Production Research, 22(2), 127–134.
  14. Read E.G., George J.A. (1990). Dual Dynamic Programming for Linear production/inventory systems. Computer Math. Applications, 19(11), 29–42.10.1016/0898-1221(90)90146-B
  15. Samanta G., Roy A. (2004). A Deterministic inventory model of deteriorating items with two rates of production and shortages. Tamsui Oxford Journal of Mathematical Sciences, 20(2), 205–218.
  16. Yanl K., Kulkarni K.V. (2008). Optimal inventory policies under stochastic production and demand rates. Stochastic Models, 24, 173–190.10.1080/15326340802016977
DOI: https://doi.org/10.37705/TechTrans/e2020016 | Journal eISSN: 2353-737X | Journal ISSN: 0011-4561
Language: English
Submitted on: Feb 1, 2020
Accepted on: Jun 4, 2020
Published on: Jun 15, 2020
Published by: Cracow University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2020 Krzysztof Schiff, published by Cracow University of Technology
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.