Abrahams, B.F., Hoskins, B.F., Michail, D.M., Robson, R. (1994). Assembly of porphyrin building blocks into network structures with large channels. Nature, 369, 727–729. https://doi.org/10.1038/369727a010.1038/369727a0
Alaerts, L., Seguin, E., Poelman, H., Thibault-Starzyk, F., Jacobs, P.A., De Vos, D.E. (2006). Probing the Lewis Acidity and Catalytic Activity of the Metal– Organic Framework [Cu3 (btc)2] (BTC=Benzene-1,3,5-tricarboxylate). Chemistry. A European Jurnal, 12, 7353–7363. https://doi.org/10.1002/chem.20060022010.1002/chem.200600220
Banerjee, D., Finkelstein, J., Smirnov, A., Forster, P.M., Borkowski, L.A., Teat, S.J., Parise, J.B. (2011). Synthesis and Structural Characterization of Magnesium Based Coordination Networks in Different Solvents. Crystal Growth & Design, 11(6), 2572–2579. http://doi.org/10.1021/cg200327y10.1021/cg200327y
Barthelet, K., Marrot, J., Riou, D., Ferey, G. (2002). A Breathing Hybrid Organic Inorganic Solid with Very Large Pores and High Magnetic Characteristics. Angewandte Chemie International Edition, 41(2), 281–284. https://doi.org/10.1002/1521-3773(20020118)41:2<281::AID-ANIE281>3.0.CO;2-Y10.1002/1521-3773(20020118)41:2<281::AID-ANIE281>3.0.CO;2-Y
Barthelet, K., Riou, D., Férey, G. (2002). [VIII(H2O)]3O(O2CC6H4CO2)3•(Cl,9H2O) (MIL-59): a rare example of vanadocarboxylate with a magnetically frustrated three-dimensional hybrid framework. Chemical Communications, (14), 1492–1493. https://doi.org/10.1039/B202749F10.1039/b202749f
Beldon, P.J., Fabian, L., Stein, R.S, Thirumurugan, A., Cheetham, A.K., Fricic, T. (2010). Rapid Room-Temperature Synthesis of Zeolitic Imidazolate Frameworks by Using Mechanochemistry. Angewandte Chemie International Edition, 49, 9640–9643. https://doi.org/10.1002/anie.20100554710.1002/anie.201005547
Burnett, B.J., Barron, P.M., Hu, C., Choe, W. (2011). Stepwise Synthesis of Metal-Organic Frameworks: Replacement of Structural Organic Linkers. Journal of the American Chemical Society, 133(26), 9984–9987. https://doi.org/10.1021/ja201911v10.1021/ja201911v21671680
Bux, H., Liang, F., Li, Y., Cravillon, J., Wiebcke, M., Caro, J. (2009). Zeolitic Imidazolate Framework Membrane with Molecular Sieving Properties by Microwave-Assisted Solvothermal Synthesis. Journal of the American Chemical Society, 131(44), 16000–16001. https://doi.org/10.1021/ja907359t10.1021/ja907359t19842668
Chen, B., Ockwig, N.W., Millward, A.R., Contreras, D.S., Yaghi, O.M. (2005). High H2 Adsorption in a Microporous Metal-Organic Framework with Open Metal Sites. Angewandte Chemie International Edition, 44, 4745–4749. https://doi.org/10.1002/anie.20046278710.1002/anie.20046278715924282
Chizallet, C., Lazare, S., Bazer-Bachi, D., Bonnier, F., Lecocq, V., Soyer, E., Quoineaud, A.A., Bats, N. (2010). Catalysis of Transesterification by a Nonfunctionalized Metal-Organic Framework: Acido-Basicity at the External Surface of ZIF-8 Probed by FTIR and ab Initio Calculations. Journal of the American Chemical Society, 132(35), 12365–12377. https://doi.org/10.1021/ja103365s10.1021/ja103365s20715825
Cramer, C.J., Truhlar, D.G. (2009). Density functional theory for transition metals and transition metal chemistry. Physical Chemistry Chemical Physics, 11, 10757–10816. https://doi.org/10.1039/B907148B10.1039/b907148b19924312
Dan-Hardi, M., Serre, C., Frot, T., Rozes, L., Maurin, G., Sanchez, C., Ferey, G. (2009). A New Photoactive Crystalline Highly Porous Titanium(IV) Dicarboxylate. Journal of the American Chemical Society, 131(31), 10857–10859. https://doi.org/10.1021/ja903726m10.1021/ja903726m19621926
DeCoste, J.B., Demasky, T.J., Katz, M.J., Farha, O.K., Hupp, J.T. (2015). A UiO-66 analogue with uncoordinated carboxylic acids for the broad-spectrum removal of toxic chemicals. New Journal of Chemistr, 39, 2396–2399. https://doi.org/10.1039/C4NJ02093F10.1039/C4NJ02093F
Dhakshinamoorthy, A., Alvaro, M., Chevreau, H., Horcajada, P., Devic, T., Serre, C., Garcia, H. (2012). Iron(III) metal-organic frameworks as solid Lewis acids for the isomerization of α-pinene oxide. Catalysis Science Technology, 2, 324–330. https://doi.org/10.1039/C2CY00376G10.1039/C2CY00376G
Dhakshinamoorthy, A., Alvaro, M., Garcia, H. (2010). Metal-Organic Frameworks as Efficient Heterogeneous Catalysts for the Regioselective Ring Opening o Epoxides. Chemistry A European Journal, 16, 8530–8536. https://doi.org/10.1002/chem.20100058810.1002/chem.20100058820549723
Dong, X., Liu, X., Chen, Y., Zhang, M. (2018). Screening of bimetallic M-Cu-BTC MOFs for CO2 activation and mechanistic study of CO2 hydrogenation to formic acid: A DFT study. Journal of CO2 Utilization, 24, 64–72. https://doi.org/10.1016/j.jcou.2017.11.01410.1016/j.jcou.2017.11.014
Du, M., Li, C.P., Zhao, X.J. (2006). Metal-Controlled Assembly of Coordination Polymers with the Flexible Building Block 4-Pyridylacetic Acid (Hpya). Crystal Growth & Design, 6(1), 335–341. https://doi.org/10.1021/cg050254210.1021/cg0502542
Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M., Yaghi, M.O. (2002). Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science, 295, 469–472. https://doi.org/10.1126/science.106720810.1126/science.106720811799235
Eddaoudi, M., Moler, D.B., Li, H., Chen, B., Reineke, T.M., O’Keeffe, M., Yaghi, O.M., (2001). Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks. Accounts of Chemical Research, 34(4), 319–330. https://doi.org/10.1021/ar000034b10.1021/ar000034b11308306
Fang, H., Demir, H., Kamakoti, P., Sholl, D.S., (2014). Recent developments in first-principles force fields for molecules in nanoporous materials. Journal of Materials Chemistry A, 2, 274–291. https://doi.org/10.1039/C3TA13073H10.1039/C3TA13073H
Farha, O.K., Yazaydın, A.O., Eryazici, I., Malliakas, C.D., Hauser, B.G., Kanatzidis, M.G., Nguyen, S.T., Snurr, R.Q., Hupp, J.T. (2010). De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chemistry, 2, 944–948. https://doi.org/10.1038/nchem.83410.1038/nchem.83420966950
Farrusseng, D., Daniel, C., Gaudillere, C., Ravon, U., Schuurman, Y., Mirodatos, C., Dubbeldam, D., Frost, H., Snurr, R.Q. (2009). Heats of Adsorption for Seven Gases in Three Metal-Organic Frameworks: Systematic Comparison of Experiment and Simulation. Langmuir, 25(13), 7383–7388. https://doi.org/10.1021/la900283t10.1021/la900283t19496548
Ferey, G., Serre, C., Mellot-Draznieks, C., Millange, F., Surble, S., Dutour, J., Margiolaki, I. (2004). A Hybrid Solid with Giant Pores Prepared by a Combination of Targeted Chemistry, Simulation, and Powder Diffraction. Angewandte Chemie International Edition, 43, 6296–6301. https://doi.org/10.1002/anie.20046059210.1002/anie.20046059215372634
Fujita, M., Kwon, Y.J., Washizu, S., Ogura, K. (1994). Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4’-Bipyridine. Journal of the American Chemical Society, 116(3), 1151–115. https://doi.org/10.1021/ja00082a05510.1021/ja00082a055
Getman, R.B., Bae, Y.S., Wilmer, C.E., Snurr, R.Q. (2012). Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal-Organic Frameworks. Chemical Reviews, 112(2), 703–723. https://doi.org/10.1021/cr200217c10.1021/cr200217c22188435
Ha, N.T.T., Lefedova, O.V., Ha, N.N. (2016). Theoretical Study on the Adsorption of Carbon Dioxide on Individual and Alkali-Metal Doped MOF-5s. Russian Journal of Physical Chemistry A, 90, 220–225. https://doi.org/10.1134/S003602441512020110.1134/S0036024415120201
Halper, S.R., Do, L., Stork, J.R., Cohen, S.M. (2006). Topological Control in Heterometallic Metal-Organic Frameworks by Anion Templating and Metalloligand Design. Journal of the American Chemical Society, 128(47), 15255–15268. https://doi.org/10.1021/ja064548310.1021/ja064548317117878
Hoffmann, F., Fröba, M. (2016). Network Topology. In S. Keskel (Ed.), The Chemistry of Metal-Organic Frameworks, (p. 5-38). Weinheim, Germany.10.1002/9783527693078.ch2
Horcajada, P., Surble, S., Serre, C., Hong, D.Y., Seo, Y.K., Chang, J.S., Greneche, J.M., Margiolaki, I., Ferey, G. (2007). Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chemical Communications, (27), 2820–2822. https://doi.org/10.1039/B704325B10.1039/B704325B
Hoskins, B. F., Robson, R. (1990). Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4’,4’’,4’’’-tetracyanotetraphenylmethane] BF4•xC6H5NO2. Journal of the American Chemical Society, 112(4), 1546–1554. https://doi.org/10.1021/ja00160a03810.1021/ja00160a038
Hwang, Y.K., Hong, D.Y., Chang, J.S., Jhung, S.H., Seo, Y.K., Kim, J., Vimont, A., Daturi, M., Serre C., Ferey, G. (2008). Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation. Angewandte Chemie International Edition, 47, 4144–4148. https://doi.org/10.1002/anie.20070599810.1002/anie.20070599818435442
Hwang, Y.K., Hong, D.Y., Chang, J.S., Seo, H., Yoon, M., Kim, J., Jhung, S.H., Serre, C., Ferey, G. (2009). Selective sulfoxidation of aryl sulfides by coordinatively unsaturated metal centers in chromium carboxylate MIL-101. Applied Catalysis A: General, 358, 249–253. https://doi.org/10.1016/j.apcata.2009.02.01810.1016/j.apcata.2009.02.018
Janiak, C., Vieth, J.K. (2010). MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New Journal of Chemistry, 34, 2366–2388. https://doi.org/10.1039/C0NJ00275E10.1039/c0nj00275e
Jung, D.W., Yang, D.A., Kim, J., Kim, J., Ahn, W.S. (2010). Facile synthesis of MOF-177 by a sonochemical method using 1-methyl-2-pyrrolidinone as a solvent. Dalton Transactions, 39, 2883–2887. https://doi.org/10.1039/b925088c10.1039/b925088c20200716
Kaye, S.S., Long, J.R. (2008). Matrix Isolation Chemistry in a Porous Metal-Organic Framework: Photochemical Substitutions of N2 and H2 in Zn4O[(ƞ6-1,4-Benzenedicarboxylate)Cr(CO)3]3. Journal of the American Chemical Society, 130, 806–807. https://doi.org/10.1021/ja710210810.1021/ja710210818154339
Kim, J., Bhattacharjee, S., Jeong, K.E., Jeong, S.Y., Ahn, W.S. (2009). Selective oxidation of tetralin over a chromium terephthalate metal organic framework, MIL-101. Chemical Communications, (26), 3904–3906. https://doi.org/10.1039/B902699A10.1039/b902699a19662247
Kitagawa, S., Kondo, M. (1998). Functional Micropore Chemistry of Crystalline Metal Complex-Assembled Compounds. Bulletin of the Chemical Society of Japan, 71, 1739–1753. https://doi.org/10.1246/bcsj.71.173910.1246/bcsj.71.1739
Kohn, W., Becke, A.D., Parr, R.G. (1996). Density Functional Theory of Electronic Structure. The Journal of Physical Chemistry, 100(31), 12974–12980. https://doi.org/10.1021/jp960669l10.1021/jp960669l
Kondo, M., Yoshitomi, T., Seki, K., Matsuzaka, H., Kitagawa, S. (1997). Three-Dimensional Framework with Channeling Cavities for Small Molecules: {[M2(4,4′-bpy)3(NO3)4]•xH2O}n (M = Co, Ni, Zn). Angewandte Chemie International Edition, 36(16), 1725–1727. https://doi.org/10.1002/anie.19971725110.1002/anie.199717251
Lammert, M., Wharmby, M.T., Smolders, S., Bueken, B., Lieb, A., Lomachenko, K.A., De Vos, D., Stock, N. (2015). Cerium-based Metal Organic Frameworks with UiO-66 Architecture: Synthesis, Properties and Redox Catalytic Activity. Chemical Communications, 51, 12578–12581. https://doi.org/10.1039/C5CC02606G10.1039/C5CC02606G26154160
Li, H., Eddaoudi, M., Groy, T.L., Yaghi, O.M. (1998). Establishing Microporosity in Open Metal-Organic Frameworks: Gas Sorption Isotherms for Zn(BDC) (BDC) 1,4-Benzenedicarboxylate). Journal of the American Chemical Society, 120(33), 8571–8572. https://doi.org/10.1021/ja981669x10.1021/ja981669x
Li, H., Eddaoudi, M., O’Keeffe, M., Yaghi, O.M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402, 276–279. https://doi.org/10.1038/4624810.1038/46248
Li, Z.Q., Qiu, L.G., Xu, T., Wu, Y., Wang, W., Wu, Z.Y., Jiang, X. (2009). Ultrasonic synthesis of the microporous metal-organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method. Materials Letters, 63, 78–80. https://doi.org/10.1016/j.matlet.2008.09.01010.1016/j.matlet.2008.09.010
Mattesini, M., Soler, J.M., Ynduráin, F. (2006). Ab initio study of metal-organic framework-5 Zn4O(1,4-benzenedicarboxylate)3: An assessment of mechanical and spectroscopic properties, Physical Review B, 2006(73), 094111. https://doi.org/10.1103/PhysRevB.73.09411110.1103/PhysRevB.73.094111
Millward, A.R., Yaghi, O.M. (2005). Metal-Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature. Journal of the American Chemical Society, 127(51), 17998–17999. https://doi.org/10.1021/ja057003210.1021/ja057003216366539
Min Choi, K., Hyo Park, J., Ku Kang, J. (2015). Nanocrystalline MOFs embedded in the crystals of other MOFs and their multifunctional performance for molecular encapsulation and energy-carrier storage. Chemistry of Materials, 27, 5088–5093. https://doi.org/10.1021/acs.chemmater.5b0178610.1021/acs.chemmater.5b01786
Miralda, C.M., Macias, E.E., Zhu, M., Ratnasamy, P., Carreon, M.A., (2012). Zeolitic Imidazole Framework-8 Catalysts in the Conversion of CO2 to Chloropropene Carbonate. ACS Catalysis, 2, 180–183. https://doi.org/10.1021/cs200638h10.1021/cs200638h
Mulfort, K.L., Hupp, J.T. (2007). Chemical Reduction of Metal-Organic Framework Materials as a Method to Enhance Gas Uptake and Binding. Journal of the American Chemical Society, 129(31), 9604–9605. https://doi.org/10.1021/ja074036410.1021/ja074036417636927
Ni, Z., Masel, R.I. (2006). Rapid Production of Metal-Organic Frameworks via Microwave-Assisted Solvothermal Synthesis. Journal of the American Chemical Society, 128(38), 12394–12395. https://doi.org/10.1021/ja063523110.1021/ja063523116984171
Ni, Z., Masel, R.I. (2006). Rapid Production of Metal-Organic Frameworks via Microwave-Assisted Solvothermal Synthesis. Journal of the American Chemical Society, 128(38), 12394–12395. https://doi.org/10.1021/ja063523110.1021/ja0635231
Odoh, S.O., Cramer, C.J., Truhlar, D.G., Gagliardi, L. (2015). Quantum-Chemical Characterization of the Properties and Reactivities of Metal−Organic Frameworks. Chemical Reviews, 115(12), 6051–6111. https://doi.org/10.1021/cr500551h10.1021/cr500551h25872949
Ohmori, O., Fujita, M. (2004). Heterogeneous catalysis of a coordination network: cyanosilylation of imines catalyzed by a Cd(II)-(4,4’-bipyridine) square grid complex. Chemical Communications, (14), 1586–1587. https://doi.org/10.1039/B406114B10.1039/B406114B15263930
Oliveira, A., Mavrandonakis, A., de Lima, G.F., De Abreu, H.A. (2017). Cyanosilylation of Aldehydes Catalyzed by MIL-101(Cr): A Theoretical Investigation. Chemistry Select, 2, 7813–7820. https://doi.org/10.1002/slct.20170094610.1002/slct.201700946
Pachfule, P., Das, R., Poddar, P., Banerjee, R. (2011). Solvothermal Synthesis, Structure, and Properties of Metal Organic Framework Isomers Derived from a Partially Fluorinated Link. Crystal Growth & Design, 11(4), 1215–1222. https://doi.org/10.1021/cg101414x10.1021/cg101414x
Park, K.S., Ni, Z., Cote, A.P., Choi, J. Y., Huang, R., Uribe-Romo, F.J., Chae, H.K., O’Keeffe, M., Yaghi, O.M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103, 10186–10191. https://doi.org/10.1073/pnas.060243910310.1073/pnas.0602439103150243216798880
Piszczek, P., Radtke, A., Grodzicki, A., Wojtczak, A., Chojnacki, J. (2007). The new type of [Zr6(μ3-O)4(μ3-OH)4] cluster core: Crystal structure and spectral characterization of [Zr6O4(OH)4(OOCR)12] (R = But, C(CH3)2Et). Polyhedron, 26, 679–685. https://doi.org/10.1016/j.poly.2006.08.02510.1016/j.poly.2006.08.025
Proch, S., Herrmannsdorfer, J., Kempe, R., Kern, C., Jess, A., Seyfarth, L., Senker, J. (2008). Pt@MOF-177: Synthesis, Room-Temperature Hydrogen Storage and Oxidation Catalysis. Chemistry A European Journal, 14, 8204–8212. https://doi.org/10.1002/chem.20080104310.1002/chem.20080104318666269
Sabo, M., Henschel, A., Frode, H., Klemm, E., Kaskel, S. (2007). Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties. Journal of Materials Chemistry, 17, 3827–3832. https://doi.org/10.1039/B706432B10.1039/b706432b
Sagara, T., Klassen, J., Ganz, E. (2005). Computational study of hydrogen binding by metal-organic framework-5. The Journal of Chemical Physics, 121, 12543–12547. https://doi.org/10.1063/1.180960810.1063/1.1809608
Samanta, A., Furuta, T., Li, J. (2006). Theoretical assessment of the elastic constants and hydrogen storage capacity of some metal-organic framework materials. The Journal Of Chemical Physics, 125, 084714. https://doi.org/10.1063/1.233728710.1063/1.2337287
Schaate, A., Roy, P., Godt, A., Lippke, J., Waltz, F., Wiebcke, M., Behrens, P. (2011). Modulated Synthesis of Zr-Based Metal-Organic Frameworks: From Nano to Single Crystals. Chemistry A European Journal, 17, 6643–6651. https://doi.org/10.1002/chem.20100321110.1002/chem.201003211
Schroder, F., Esken, D., Cokoja, M., van den Berg, M.W.E., Lebedev, O.I., van Tendeloo, G., Walaszek, B., Buntkowsky, G., Limbach, H.H., Chaudret, B., Fischer, R.A. (2008). Ruthenium Nanoparticles inside Porous [Zn4O(bdc)3] by Hydrogenolysis of Adsorbed [Ru(cod)(cot)]: A Solid-State Reference System for Surfactant-Stabilized Ruthenium Colloids. Journal of the American Chemical Society, 130(19), 6119–6130. https://doi.org/10.1021/ja078231u10.1021/ja078231u
Serre, C., Millange, F., Thouvenot, C., Nogues, M., Marsolier, G., Louer, D., Ferey, G. (2002). Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)•{O2C-C6H4-CO2}•{HO2C-C6H4-CO2H}x•H2Oy. Journal of the American Chemical Society, 124, 13519–13526. https://doi.org/10.1021/ja027697410.1021/ja027697412418906
Stock, N., Biswas, S. (2012). Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews, 112(2), 933–969. https://doi.org/10.1021/cr200304e10.1021/cr200304e22098087
Sugimoto, T., Mizushima, T., Okamoto, A., Kurita, N. (2014). Structures and electronic properties of metal organic frameworks: DFT and ab initio FMO calculations for model systems. Chemical Physics Letters, 612, 295–301. https://doi.org/10.1016/j.cplett.2014.08.01210.1016/j.cplett.2014.08.012
Supronowicz, B., Mavrandonakis, A., Heine, T. (2013). Interaction of Small Gases with the Unsaturated Metal Centers of the HKUST-1 Metal Organic Framework. The Journal of Physical Chemistry, 117(28), 14570–14578. https://doi.org/10.1021/jp401803710.1021/jp4018037
Tröbs, L., Wilke, M., Szczerba, W., Reinholz, U., Emmerling, F. (2014). Mechanochemical synthesis and characterization of two new bismuth metal organic frameworks. CrystEngComm, 16, 5560–5565. https://doi.org/10.1039/C3CE42633E10.1039/C3CE42633E
Vandichel, M., Hajek, J., Vermoortele, F., Waroquier, M., De Vosb, D.E., Van Speybroeck, V. (2015). Active site engineering in UiO-66 type metal–organic frameworks by intentional creation of defects: a theoretical rationalization. CrystEngComm, 17, 395–406. https://doi.org/10.1039/C4CE01672F10.1039/C4CE01672F
Venkataramanan, N.S., Sahara, R., Mizuseki, H., Kawazoe, Y. (2009). Probing the Structure, Stability and Hydrogen Adsorption of Lithium Functionalized Isoreticular MOF-5 (Fe, Cu, Co, Ni and Zn) by Density Functional Theory. International Journal of Molecular Sciences, 10, 1601–1608. https://doi.org/10.3390/ijms1004160110.3390/ijms10041601268063619468328
Vermoortele, F., Ameloot, R., Vimont, A., Serrec, C., De Vos, D. (2011). An amino-modified Zr-terephthalate metal-organic framework as an acid-base catalyst for cross-aldol condensation. Chemical Communications, 47, 1521–1523. https://doi.org/10.1039/c0cc03038d10.1039/C0CC03038D
Vermoortele, F., Bueken, B., Bars, G.L., Voorde, B.V., Vandichel, M., Houthoofd, K., Vimont, A., Daturi, M., Waroquier, M., Speybroeck, V.V., Kirschhock, C., De Vos, D.E. (2013). Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal-Organic Frameworks: The Unique Case of UiO-66(Zr). Journal of the American Chemical Society, 135(31), 11465–11468. https://doi.org/10.1021/ja405078u10.1021/ja405078u23875753
Vermoortele, F., Vandichel, M., de Voorde, B.V., Ameloot, R., Waroquier, M., Van Speybroeck, V., De Vos, D.E. (2012). Electronic Effects of Linker Substitution on Lewis Acid Catalysis with Metal-Organic Frameworks. Angewandte Chemie International Edition, 51, 1–5. https://doi.org/10.1002/anie.20110856510.1002/anie.20110856522488675
Vimont, A., Goupil, J.M., Lavalley, J.C., Daturi, M., Surble, S., Serre, C., Millange, F., Ferey, G., Audebrand, N. (2006). Investigation of Acid Sites in a Zeotypic Giant Pores Chromium(III) Carboxylate. Journal of the American Chemical Society, 128(10), 3218–3227. https://doi.org/10.1021/ja056906s10.1021/ja056906s16522102
Vimont, A., Leclerc, H., Mauge, F., Daturi, M., Lavalley, J.C., Surble, S., Serre, C., Ferey, G. (2007). Creation of Controlled Brønsted Acidity on a Zeotypic Mesoporous Chromium(III) Carboxylate by Grafting Water and Alcohol Molecules. The Journal of Physical Chemistry C, 111(1), 383–388. https://doi.org/10.1021/jp064686e10.1021/jp064686e
Wong-Foy, A.G., Matzger, A.J., Yaghi, O.M. (2006). Exceptional H2 Saturation Uptake in Microporous Metal-Organic Frameworks. Journal of the American Chemical Society, 128(11), 3494–3495. https://doi.org/10.1021/ja058213h10.1021/ja058213h16536503
Wu, C.D., Hu, A., Zhang, L., Lin, W. (2005). A Homochiral Porous Metal-Organic Framework for Highly Enantioselective Heterogeneous Asymmetric Catalysis. Journal of the American Chemical Society, 127(25), 8940–8941. https://doi.org/10.1021/ja052431t10.1021/ja052431t15969557
Yaghi, O.M., Li, H. (1995). Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels. Journal of the American Chemical Society, 117(41), 10401–10402. https://doi.org/10.1021/ja00146a03310.1021/ja00146a033