Have a personal or library account? Click to login

The verification of a piezoelectric vibration-suppression system with a multimode basic RLC shunt circuit and its comparison to a multi-mode current-flowing shunt circuit

Open Access
|Apr 2020

References

  1. Ahmadian, M., Jeric, K. M. (2001). On the application of shunted piezoceramics for increasing acoustic transmission loss in structures. J. Sound Vib., 243(2), 347–359.10.1006/jsvi.2000.3417
  2. Batra, R. C., Dell’Isola, F., Vidoli, S., Vigilante, D. (2005). Multimode vibration suppression with passive two-terminal distributed network incorporating piezoceramic transducers. Int. J. Solids Struct., 42(11–12), 3115–3132.10.1016/j.ijsolstr.2004.11.004
  3. Behrens, S., Moheimani, O. R., Fleming, A. J. (2003). Multiple mode current flowing passive piezoelectric shunt controller. J. Sound Vib., 266(5), 929–942.10.1016/S0022-460X(02)01380-9
  4. Berardengo, M., Manzoni, S., Conti, A. M. (2017). Multi-mode passive piezoelectric shunt damping by means of matrix inequalities. J. Sound Vib., 405, 287–305.10.1016/j.jsv.2017.06.002
  5. Goldstein, A. L. (2011). Self-Tuning multimodal piezoelectric shunt damping. J. Brazilian Soc. Mech. Sci. Eng., 33(4), 428–436.10.1590/S1678-58782011000400006
  6. Granier, J. J., Hundhausen, R. J., Gaytan, G. E. (2002). Passive modal damping with piezoelectric shunts. Proc. SPIE, 1, 583–589.
  7. Hagood, N. W., Von Flotow, A. (1991). Damping of structural vibrations with piezoelectric materials and passive electrical networks, J. Sound Vib., 146(2), 243–268.10.1016/0022-460X(91)90762-9
  8. Hansen, S. S. D. (2013). Active control of noise and vibration, second edition. Boca Racon: CRC Press Book.
  9. Hollkamp, J. J. (1994). Multimodal passive vibration suppression with piezoelectric materials and resonant shunts. J. Intell. Mater. Syst. Struct., 49–57.10.1177/1045389X9400500106
  10. Khorshidi, K., Rezaei, E., Ghadimi, A. A., Pagoli, M. (2015). Active vibration control of circular plates coupled with piezoelectric layers excited by plane sound wave. Appl. Math. Model., 39(3–4), 1217–1228.10.1016/j.apm.2014.08.007
  11. Kozień, M. S., Koltowski, B. (2011). Comparison of active and passive damping of plate vibration by piezoelectric actuators – FEM Simulation. Acta Phys. Pol. Ser. a, 119(6), 1005–1008.10.12693/APhysPolA.119.1005
  12. Kozień, M. S., Ścisło, Ł. (2015). Simulation of control algorithm for active reduction of transversal vibrations of beams by piezoelectric elements based on identification of bending moment. Acta Phys. Pol. A, 128(1A), A-56-A-61.10.12693/APhysPolA.128.A-56
  13. Kozień, M. S., Wiciak, J. (2010). Passive structural acoustic control of the smart plate – FEM simulation. Acta Phys. Pol. A, 118(6), 1186–1188.10.12693/APhysPolA.118.1186
  14. Lossouarn, B., Aucejo, M., Deü, J. F., Multon, B. (2017). Design of inductors with high inductance values for resonant piezoelectric damping. Sensors Actuators, A Phys., 259, 68–76.10.1016/j.sna.2017.03.030
  15. Moheimani, S. O. R., Fleming, A. J. (2006). Piezoelectric transducers for vibration control and damping. Berlin–Heidelberg: Springer Science & Business Media.
  16. Ścisło, Ł., Kozień, M. S. (2010). FEM analysis of a beam for piezolectric passive vibration control system. Czasopismo Techniczne, 2-M, 247–254.
  17. Ścisło, Ł., Kozień, M. S. (2011). Transient analysis of the vibrating beam with PZT elements using finite element method, Czasopismo Techniczne, 1-M, 75–81.
  18. Ścisło, Ł., Kozień, M. S. (2014). Analytical and numerical solutions for simulations of multimodal vibration reduction using piezoelectric elements. In ICSV20: 20th International Congress on Sound & Vibration (pp. 13–17). Bangkok: ICSV.
  19. Ścisło, Ł., Kozień, M. S. (2018). Experimental verification of a control algorithm based on measurement of bending moment by the strain measurement method used for active reduction of transversal vibrations of beams by piezoelectric elements. In ICSV25: 25th International Congress on Sound & Vibration (pp. 882–890). Hiroshima: ICSV.
  20. Wiciak, J. (2008). Wybrane zagadnienia redukcji drgań i dźwięków strukturalnych, Kraków: AGH.
  21. Yi, S., Ling, S. F., Ying, M. (2000). Large deformation finite element analyses of composite structures integrated with piezoelectric sensors and actuators. Finite Elem. Anal. Des., 35(1), 1–15.10.1016/S0168-874X(99)00045-1
  22. Żołopa, E., Brański, A. (2014). Analytical determination of optimal actuators position for single mode active reduction of fixed-free beam vibration using the linear quadratic problem idea. Acta Phys. Pol. A, 125(4A), A-155-A-158.10.12693/APhysPolA.125.A-155
DOI: https://doi.org/10.37705/TechTrans/e2020002 | Journal eISSN: 2353-737X | Journal ISSN: 0011-4561
Language: English
Submitted on: Oct 19, 2018
Accepted on: Mar 25, 2020
Published on: Apr 6, 2020
Published by: Cracow University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Łukasz Ścisło, published by Cracow University of Technology
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.