References
- A
hn J., Choi H., Lee H., Kim S.W., Lee J., Kim H.-D., Simultaneous Validity and Intra-Test Reliability of Joint Angle Meas-urement through Novel Multi-RGB Sensor-Based Three-Joint-Continuous-Motion Analysis: A Pilot Study, Appl. Sci., 2023, 14, 73, DOI: 10.3390/app14010073. - A
ndrews M., Noyes F.R., Hewett T.E., Andriacchi T.P., Lower limb alignment and foot angle are related to stance phase knee adduction in normal subjects: a critical analysis of the reliability of gait analysis data, J. Orthop. Res., 1996, 14, 289–295, DOI: 10.1002/jor.1100140218. - A
rifin W., Sample size calculator. https://wnarifin.github.io/ssc_web.html [Accessed: 2 Nov. 2021]. - B
arzyk P., Boden A.S., Howaldt J., Stürner J., Zimmermann P., Seebacher D., Liepert J., Stein M., Gruber M., Schwenk M., Steps to Facilitate the Use of Clinical Gait Analysis in Stroke Patients: The Validation of a Single 2D RGB Smartphone Video-Based System for Gait Analysis, Sensors, 2024, 24 (23), DOI: 10.3390/s24237819. - B
radski G., Kaehler A., OpenCV, Dr Dobb’s J softw tools, 2000, 3 (2). - C
armo A.A., Kleiner A.F., Costa P.H., Barros R.M., Three-dimensional kinematic analysis of upper and lower limb motion during gait of post-stroke patients, Braz. J. Med. Biol. Res., 2012, 45 (6), 537–545, DOI: 10.1590/S0100-879X2012007500051. - C
ayir A., Yavuzer G., Sayli R.T., Gurcay E., Culha V., Bozkurt M., Evaluation of joint findings with gait analysis in children with hemophilia, J. Back Musculoskelet. Rehabil., 2014, 27, 307–313, DOI: 10.3233/BMR-130448. - C
ho Y.S., Jang S.H., Cho J.S., Kim M.J., Lee H.D., Lee S.Y., Moon S.B., Evaluation of Validity and Reliability of Inertial Measurement Unit-Based Gait Analysis Systems, Ann. Rehabil. Med., 2018, 42 (6), 872–883, DOI: 10.5535/arm.2018.42.6.872. - C
ourtney J.,de Paor A.M., A monocular marker-free gait measurement system, IEEE Trans. Neural. Syst. Rehabil. Eng., 2010, 18 (4), 453–460, DOI: 10.1109/TNSRE.2010.2041792. - D’H
aene M., Chorin F., Colson S.S., Guérin O., Zory R., Piche E., Validation of a 3D Markerless Motion Capture Tool Using Multiple Pose and Depth Estimations for Quantitative Gait Analysis, Sensors, 2024, 24 (22), 7105, DOI: 10.3390/s24227105. - D
i Paolo S., Lopomo N.F., Della Villa F., Paolini G., Figari G., Bragonzoni L., Grassi A., Zaffagnini S., Rehabili-tation and Return to Sport Assessment after Anterior Cruciate Ligament Injury: Quantifying Joint Kinematics during Complex High-Speed Tasks through Wearable Sensors, Sensors, 2021, 21 (7), 2331, DOI: 10.3390/s21072331. - F
euvrier F., Sijobert B., Azevedo C., Griffiths K., Alonso S., Dupeyron A., Laffont I., Froger J., Inertial measurement unit compared to an optical motion capturing system in post-stroke individuals with foot-drop syndrome, Ann. Phys. Rehabil. Med., 2020, 63 (3), 195–201, DOI: 10.1016/j.rehab.2019.03.007. - H
addas R., Ju K.L., Belanger T., Lieberman I.H., The use of gait analysis in the assessment of patients afflicted with spinal disorders, Eur. Spine J., 2018, 27, 1712–1723, DOI: 10.1007/s00586-018-5569-1. - H
afer J.F., Mihy J.A., Hunt A., Zernicke R.F., Johnson R.T., Lower Extremity Inverse Kinematics Results Differ Between Inertial Measurement Unit- and Marker-Derived Gait Data, J. Appl. Biomech., 2023, 39 (3), 133–142, DOI: 10.1123/jab.2022-0194. - H
aji Hassani R., Willi R., Rauter G., Bolliger M., Seel T., Validation of Non-Restrictive Inertial Gait Analysis of Individuals with Incomplete Spinal Cord Injury in Clinical Settings, Sensors, 2022, 22 (11), 4237, DOI: 10.3390/s22114237. - H
ulleck A.A., Menoth Mohan D., Abdallah N., El Rich M., Khalaf K., Present and future of gait assessment in clinical practice: Towards the application of novel trends and technologies, Front. Med. Technol., 2022, 4, 901331, DOI: 10.3389/fmedt.2022.901331. - K
hobkhun F., Hollands M.A., Richards J., Ajjimaporn A., Can We Accurately Measure Axial Segment Coordination during Turning Using Inertial Measurement Units (IMUs)?, Sensors, 2020, 20 (9), 2518, DOI: 10.3390/s20092518. - K
im J.-H., Lee S.-W., Toward Approaches to Scalability in 3D Human Pose Estimation, Adv. Neural Inf. Process Syst., 2024, 37, 105476–105502. - L
andis J.R., Koch G.G., The measurement of observer agreement for categorical data, Biometrics, 1977, 33 (1), 159–174, DOI: 10.2307/2529310. - L
ee D.H., Han S., Reliability of Measuring Leg Segments and Joint Angles Using Smartphones during Aquatic Exercise, Health Inform. Res., 2022, 28 (1), 95–101, DOI: 10.4258/hir.2022.28.1.95. - L
ee K., Agreement between 3D Motion Analysis and Tele-Assessment Using a Video Conferencing Application for Telerehabilitation, Healthcare, 2021, 9 (11), 1591, DOI: 10.3390/healthcare9111591. - L
ee N., Ahn J., Lim W., Concurrent and angle-trajectory validity and intra-trial reliability of a novel multi-view image-based motion analysis system, J. Hum. Kinet., 2023, 86, 31–40, DOI: 10.5114/jhk/159587. - L
in J., Wang Y., Sha J., Li Y., Fan Z., Lei W., Yan Y., Clin-ical reliability and validity of a video-based markerless gait evaluation method, Front. Pediatr., 2023, 11, 1331176, DOI: 10.3389/fped.2023.1331176. - M
artin Bland J., Altman D., Statistical methods for assessing agreement between two methods of clinical measurement, The Lancet, 1986, 327 (8476), 307–310, DOI: 10.1016/S0140-6736(86)90837-8. - M
c Ginley J.L., Baker R., Wolfe R., Morris M.E., The reliability of three-dimensional kinematic gait measurements: a systematic review, Gait Posture, 2009, 29 (3), 360–369, DOI: 10.1016/j.gaitpost.2008.09.003. - M
ills P.M., Morrison S., Lloyd D.G., Barrett R.S., Repeatability of 3D gait kinematics obtained from an electromagnetic tracking system during treadmill locomotion, J. Biomech., 2007, 40 (7), 1504–1511, DOI: 10.1016/j.jbiomech.2006.06.017. - M
olina -Rueda F., Fernández -González P., Cuesta -Gómez A., Koutsou A., Carratalá -Tejada M., Miangolarra -Page J.C.,Test-Retest Reliability of a Conventional Gait Model for Regis-tering Joint Angles during Initial Contact and Toe-Off in Healthy Subjects, Int. J. Environ. Res. Public Health, 2021, 18 (3), 1343, DOI: 10.3390/ijerph18031343. - N
guyen B.T., Baicoianu N.A., Howell D.B., Peters K.M., Steele K.M., Accuracy and repeatability of smartphone sensors for measuring shank-to-vertical angle, Prosthet. Orthot. Int., 2020, 44 (3), 172–179, DOI: 10.1177/0309364620911314. - O
berg T., Karsznia A., Oberg K., Joint angle parameters in gait: reference data for normal subjects, 10–79 years of age, J. Rehabil. Res. Dev., 1994, 31 (3), 199–213. - Ö
zsoy U., Yildirim Y., Karaşin S., Şekerci R., Süzen L.B., Reliability and agreement of Azure Kinect and Kinect v2 depth sensors in the shoulder joint range of motion estimation, J. Shoulder Elbow. Surg., 2022, 31 (10), 2049–2056, DOI: 10.1016/j.jse.2022.04.007. - P
ark J., Han K., Quantifying Gait Asymmetry in Stroke Patients: A Statistical Parametric Mapping (SPM) Approach, Med. Sci. Monit., 2025, 31, e946754, DOI: 10.12659/MSM.946754. - P
usara A., Heamawatanachai S., Sinsurin K., Jorrakate C., Reliability of a low-cost webcam recording system for three-dimensional lower limb gait analysis, Int. Biomech., 2019, 6 (1), 85–92, DOI: 10.1080/23335432.2019.1671221. - S
aner R.J., Washabaugh E.P., Krishnan C., Reliable sagittal plane kinematic gait assessments are feasible using low-cost webcam technology, Gait Posture, 2017, 56, 19–23, DOI: 10.1016/j.gaitpost.2017.04.030. - S
mith P.A., Hassani S., Reiners K., Vogel L.C., Harris G.F., Gait analysis in children and adolescents with spinal cord injuries, J. Spinal Cord. Med., 2004, 27 (Suppl. 1), S44–49, DOI: 10.1080/10790268.2004.11753784. - W
ang X.M., Smith D.T., Zhu Q., A webcam-based machine learning approach for three-dimensional range of motion evaluation, PLoS One, 2023, 18 (10), e0293178, DOI: 10.1371/journal.pone.0293178. - X
u C., Tsuji S., Makihara Y., Li X., Yagi Y., Occluded gait recognition via silhouette registration guided by automated occlusion degree estimation, Proceedings of the IEEE/CVF Inter-national Conference on Computer Vision, 2023, 3199–3209. - Ż
uk M., Wojtków M., Popek M., Mazur J., Bulińska K., Three-dimensional gait analysis using a virtual reality tracking system, Measurement, 2022, 188, 110627, DOI: 10.1016/j.measurement.2021.110627.