References
- A
garwal P., Maan V., Sutar S., Chauhan L., Suture Selection for Incision Closure in Pediatric Cataract Surgery: A Dilemma for Pediatric Ophthalmologists, J. Pediatr. Ophthalmol. Strabismus, 2022, 59 (4), 243–247, DOI: 10.3928/01913913-20211111-02. - A
kti A., Cengiz Z.O., Gürses G., Serin H., Investigation of Absorbable and Non-Absorbable Multifilament Suture Materials in Terms of Strength Changes Using Chlorhexidine Mouthwash and Thermal Cycling: An In Vitro Study, Materials, 2024, 17 (15), 3862, DOI: 10.3390/ma17153862. - A
lhulaybi Z.A., Fabrication and Characterization of Poly(lac tic acid)-Based Biopolymer for Surgical Sutures, Chem. Engineering, 2023, 7 (5), 98, DOI: 10.3390/chemengineering7050098. - B
arbosa MCd S.,da Silva H.N., Lopes Dd S. et al., Biodegradable Chitosan Sutures Enhanced with N-Acetyl-D-Glucosamine: Comparative Study with Catgut Sutures, Mat. Res., 2024, 27, DOI: 10.1590/1980-5373-mr-2024-0278. - B
riddell J.W., Riexinger L.E., Graham J., Ebenstein D.M., Comparison of Artificial Saliva vs Saline Solution on Rate of Suture Degradation in Oropharyngeal Surgery, JAMA Otolaryngol. Head Neck Surg., 2018, 144 (9), 824–830, DOI: 10.1001/jamaoto.2018.1441. - B
yrne M., Aly A. The Surgical Suture, Aesthet. Surg. J., 2019, 39 (Suppl. 2), 67–72. DOI: 10.1093/asj/sjz036. - C
awthorne D.P., Castillo T.E., Sivakumar B.S., Effect of commonly used surgical solutions on the tensile strength of absorbable sutures: an in-vitro study, ANZ J. Surg., 2021, 91, 1451–1454, DOI: 10.1111/ans.16908. - D
eng X., Qasim M., Ali A., Engineering and polymeric composition of drug-eluting suture: A review, J. Biomed. Mater. Res. A., 2021, 109 (10), 2065–2081, DOI: 10.1002/jbm.a.37194. - D
ennis C., Sethu S., Nayak S., Mohan L., Morsi Y.Y., Manivasagam G., Suture materials – Current and emerging trends, J. Biomed. Mater. Res. A., 2016, 104 (6), 1544–1559, DOI: 10.1002/jbm.a.35683. - D
resing K., Slongo T., Chirurgisches Nahtmaterial – Grundlagen, Oper. Orthop. Traumatol., 2023, 35, 298–316, DOI: 10.1007/s00064-023-00812-y. - Ethicon. (n.d.), Wound closure manual, Retrieved from https://anwresidency.com/simulation/guide/resources/Ethicon_Wound_Closure_manual.pdf (acces: 28.08.2024)
- Ethicon, Katalog produktów szwy chirurgiczne, siatki przepuklinowe, hemostatyki, 2014. Retrieved from https://anmar.tychy.pl/wp-content/uploads/2014/12/szwy_siatki_hemostatyki.pdf [Accessed: 30.07.2025].
- G
ierek M., Kuśnierz K., Lampe P. et al. Absorbable sutures in general surgery – review, available materials, and optimum choices, Pol. Przegl. Chir., 2018, 90 (2), 34–37, DOI: 10.5604/01.3001.0010.5632. - G
ierek M., Merkel K., Ochała -Gierek G., Niemiec P., Szyluk K., Kuśnierz K., Which Suture to Choose in Hepato-Pancreatic-Biliary Surgery? Assessment of the Influence of Pancreatic Juice and Bile on the Resistance of Suturing Materials – In Vitro Research, Biomedicines, 2022, 10 (5), 1053, DOI: 10.3390/biomedicines10051053. - G
uambo M.P.R., Spencer L., Vispo N.S., Vizuete K., Debut A., Whitehead D.C., Santos -Oliveira R., Alexis F., Natural Cellulose Fibers for Surgical Suture Applications, Polymers, 2020, 12 (12), 3042, DOI: 10.3390/polym12123042. - G
upta V., Potential of Natural Plant-Based Materials in the Development of Biocompatible Drug-Eluting Surgical Sutures: A Review, Biomed. Mater. Devices, 2025, 3, 1125–1149, DOI: 10.1007/s44174-024-00259-0. - H
akim M.L., Nahar N., Saha M., Islam M.S., Reza H.M., Sharker S.M., Local drug delivery from surgical thread for area-specific anesthesia, Biomed. Phys. Eng. Express, 2020, 6 (1), 015028, DOI: 10.1088/2057-1976/ab6a1e. - H
assan H.K., Dental Suturing Materials and Techniques, Glob. J. Otolaryngol., 2017, 12 (2), 555833, DOI: 10.19080/GJO.2017.12.555833. - Jinhuan Medical Absorbable surgical suture product (trade name (PGA)) http://en.sh-jinhuan.com/f2c61b8d-0977-6255-721d-62dfc7705318/08152ba2-f938-3229-fd16-8d1004fa8341.shtml [Accessed: 30.07.2025]
- K
ampeerapappun P., Desclaux S., Rattanapinyopituk K. et al., Natural cellulose fibers derived from Dracaena angolensis (Welw. ex Carrière) Byng & Christenh. demonstrate potential as a non-absorbable surgical suture biomaterial, Sci. Rep., 2025, 15, 1291, DOI: 10.1038/s41598-025-85886-3. - K
arpiński R., Szabelski J., Maksymiuk J., Effect of Ringer’s Solution on Tensile Strength of Non-Absorbable, Medium- and Long-Term Absorbable Sutures, Adv. Sci. Technol. Res. J., 2017, 11 (4), 11–20, DOI: 10.12913/22998624/76084. - K
ashiwabuchi F., Parikh K.S., Omiadze R., Zhang S., Luo L., Patel H.V., Xu Q., Ensign L.M., Mao H.Q., Hanes J., Mc Donnell P.J., Development of Absorbable, Antibiotic-Eluting Sutures for Ophthalmic Surgery, Transl. Vis. Sci. Technol., 2017, 6 (1), 1, DOI: 10.1167/tvst.6.1.1. - K
awai F., Kawabata T., Oda M., Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields, Appl. Microbiol. Biotechnol., 2019, 103, 4253–4268, DOI: 10.1007/s00253-019-09717-y. - K
udur M.H., Pai S.B., Sripathi H., Prabhu S., Sutures and suturing techniques in skin closure, Indian J. Dermatol. Venereol. Leprol., 2009, 75 (4), 425–434, DOI: 10.4103/0378-6323.53155. - L
i Y., Meng Q., Chen S., Ling P., Kuss M.A., Duan B., Wu S., Advances, challenges, and prospects for surgical suture materials, Acta Biomater., 2023, 168, 78–112, DOI: 10.1016/j.actbio.2023.07.041. - M
adsen K., Martens A., Haspeslagh M., Meulyzer M., Gustafsson K., The effect of medical grade honey on tensile strength, strain, and Young’s modulus of synthetic absorbable suture material used in equine surgery, Equine Vet. J., 2024, 56 (1), 193–201, DOI: 10.1111/evj.13966. - M
atalia J., Panmand P., Ghalla P., Comparative analysis of non-absorbable 10-0 nylon sutures with absorbable 10-0 Vicryl sutures in pediatric cataract surgery, Indian J. Ophthalmol., 2018, 66 (5), 661–664, DOI: 10.4103/ijo.IJO_654_17. - M
erkel K., Grzybowska K., Strach A., Gierek M., The Degradation of Absorbable Surgical Threads in Body Fluids: Insights from Infrared Spectroscopy Studies, Int. J. Mol. Sci. 2024, 25 (20), 11333, DOI: 10.3390/ijms252011333. - M
üller D.A., Snedeker J.G., Meyer D.C., Two-month longitudinal study of mechanical properties of absorbable sutures used in orthopedic surgery, J. Orthop. Surg. Res., 2016, 11, 111, DOI: 10.1186/s13018-016-0451-5. - N
iculescu M., Antoniac A., Vasile E., Semenescu A., Trante O., Sohaciu M., Musetescu A., Evaluation of biodegradability of surgical synthetic absorbable suture materials: An in vitro study, Mater. Plast., 2016, 53 (4), 642–645. - O
jastha B. L., Jeevitha M., An Evaluation of the Tensile Strength of Polyglactin Sutures After Immersion in Different Herbal Mouthwashes: An In Vitro Study, Cureus, 2023, 15 (8), e43407, DOI: 10.7759/cureus.43407. - O
oi , C.P., Cameron R.E., The hydrolytic degradation of polydioxanone (PDSII) sutures. Part I: Morphological aspects, J. Biomed. Mater. Res., 2002, 63 (3), 280–290, DOI: 10.1002/jbm.10180. - R
ose J., Tuma F., Sutures And Needles, 2023 Aug. 28. In: Stat-Pearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK539891/ - S
hawe S., Buchanan F., Harkin -Jones E. et al., A study on the rate of degradation of the bioabsorbable polymer polyglycolic acid (PGA), J Mater. Sci., 2006, 41, 4832–4838, DOI: 10.1007/s10853-006-0064-1. - S
heng S.T., Wu X.D., Xu J.W., Xu Z., Ni S., Xu W., Xu Z.K., Biomaterials in Relative Devices for Traumatic Cataract: Recent Advances and Future Perspectives, ACS Biomater. Sci. Eng., 2025, 11 (4), 1990−2007, DOI: 10.1021/acsbiomaterials. 4c02117. - S
riyai M., Tasati J., Molloy R., Meepowpan P., Somsunan R., Worajittiphon P., Daranarong D., Meerak J., Punyodom W., Development of an Antimicrobial-Coated Absorbable Monofilament Suture from a Medical-Grade Poly(l-lactide-co-ε-caprolactone) Copolymer, ACS Omega. 2021, 6 (43), 28788–28803, DOI: 10.1021/acsomega.1c03569. - S
zabelski J., Karpiński R., Short-Term Hydrolytic Degradation of Mechanical Properties of Absorbable Surgical Sutures: A Comparative Study, J. Funct. Biomater., 2024, 15 (9), 273, DOI: 10.3390/jfb15090273. - T
ummalapalli M. et al., Antimicrobial Surgical Sutures: Recent Developments and Strategies, Polym. Rev., 2016, 56 (4), 607–630, DOI: 10.1080/15583724.2015.1119163. - T
uran S.K., Kiliç Süloğlu A., İde S., Türkeş T., Barlas N., In vitro and in vivo investigation of Argiope bruennichi spider silk-based novel biomaterial for medical use, Biopolymers, 2024, 115 (3), e23572, DOI: 10.1002/bip.23572. - V
ogels R.R., Lambertz A., Schuster P., Jockenhoevel S., Bouvy N.D., Disselhorst -Klug C., Neumann U.P., Klinge U., Klink C.D., Biocompatibility and biomechanical analysis of elastic TPU threads as new suture material, J. Biomed. Mater. Res. B., Appl. Biomater., 2017, 105 (1), 99–106, DOI: 10.1002/jbm.b.33531. - Y
ang Z., Liu S., Li J. et al., Study on Preparation of Core-Spun Yarn Surgical Sutures by Compositing Drug-Loaded Nanofiber Membrane with PLA and Its Controllable Drug Release Performance, Fibers Polym., 2023, 24, 4181–4193, DOI: 10.1007/s12221-023-00386-3. - Z
urek M., Kajzer A., Basiaga M., Jendruś R., Właściwości wytrzymałościowe wybranych polimerowych nici chirurgicznych, Polimery, 2016, 61 (5), 334–338, DOI: 10.14314/polimery.2016.334.