References
- A
lam N., Newport D., Influence of Wall Compliance on the Flow Patterns in a Patient-Specific Brachio-Cephalic Arterio-Venous Fistula, Biomechanics, 2022, 2 (2), 158–173. - B
ateman A.R., Lechner -Scott J., Bateman G.A., Ramadan S., Barber T., Computational Fluid Dynamic Simulation of the Cerebral Venous System in Multiple Sclerosis and Control Patients: Are Hemodynamic Variances Evident in Multiple Sclerosis?, IEEE Trans. Biomed. Eng., 2024. - B
ergersen A., Slyngstad A., Gjertsen S., Souche A., Valen -Sendstad K., turtleFSI: A Robust and Monolithic FEniCS-based Fluid-Structure Interaction Solver, J. Open Source Softw., 2020, 5 (50), 2089. - B
ukala J., Kwiatkowski P., Malachowski J., Numerical analysis of crimping and inflation process of balloon-expandable coronary stent using implicit solution, Int. J. Numer. Method Biomed. Eng., 2017, 33 (12). - C
orpataux J.M., Low-pressure environment and remodelling of the forearm vein in Brescia-Cimino haemodialysis access, Nephrology Dialysis Transplantation, 2002, 17 (6), 1057–1062. - D
ecorato I., Kharboutly Z., Legallais C., Salsac A.V., Numerical study of the influence of wall compliance on the haemodynamics in a patient-specific arteriovenous fistula, Comput. Methods Biomech. Biomed. Engin., 2011, 14 (Suppl. 1), 121–123. - D
ecorato I., Kharboutly Z., Vassallo T., Penrose J., Legallais C., Salsac A.V., Numerical simulation of the fluid structure interactions in a compliant patient-specific arteriovenous fistula, Int. J. Numer. Method Biomed. Eng., 2014, 30 (2), 143–159. - G
uess W., Fluid-structure interaction modelling of a patient-specific arteriovenous access fistula, Thesis. University of Cape Town, 2016. - G
unasekera S., Ng O., Thomas S., Varcoe R.,de Silva C., Barber T., Tomographic PIV analysis of physiological flow conditions in a patient-specific arteriovenous fistula, Exp. Fluids, 2020, 61 (12), 253. - G
unasekera S., Ng O., Thomas S., Varcoe R.,de Silva C., Barber T., Impact of juxta-anastomotic stent implantation on the haemodynamics within a single representative patient AVF, Int. J. Heat Fluid Flow, 2021, 92, 108874. - H
eil M., An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems, Comput. Methods Appl. Mech. Eng., 2004, 193 (1–2), 1–23. - J
iang M.X., Khan M.O., Ghobrial J., Rogers I.S., Pettersson G.B., Blackstone E.H. et al., Patient-specific fluid–structure simulations of anomalous aortic origin of right coronary arteries, JTCVS Tech., 2022, 13, 144–162. - J
odko D., Barber T., Fluid–structure interaction in a follow-up study of arterio-venous fistula maturation, Sci. Rep., 2024, 14 (1), 1–20. - J
odko D., Jeckowski M., Tyfa Z., Fluid structure interaction versus rigid-wall approach in the study of the symptomatic stenosed carotid artery: Importance of wall compliance and resilience of loose connective tissue, Int. J. Numer. Method Biomed. Eng., 2022, 38 (8), e3630. - J
odko D., Palczynski T., Reorowicz P., Miazga K., Obidowski D., Jozwik K., Determination of a pressure drop in the arteriovenous fistula with fluid structure interaction simulations and in vitro methods, ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 2017. - K
umar N., Khader S.M.A., Pai R., Khan S.H., Kyriacou P.A., Fluid structure interaction study of stenosed carotid artery considering the effects of blood pressure, Int. J. Eng. Sci., 2020, 154, 103341. - L
iu J., Yang W., Lan I.S., Marsden A.L., Fluid-structure interaction modeling of blood flow in the pulmonary arteries using the unified continuum and variational multiscale formulation, Mech. Res. Commun., 2020, 107, 103556. - L
iu X., Fletcher D.F., Verification of fluid-structure interaction modelling for wave propagation in fluid-filled elastic tubes, J. Algorithm Comput. Technol., 2023, 17, 1–13. - L
iu Y., Zheng Y., Pitre J., Weitzel W., Bull J., Shih A., Manufacturing and Computational Fluid Dynamics Modeling of a Patient-Specific Fistula Model – MSEC2017-3002 [Internet]. 2017. Available from: https://asmedigitalcollection.asme.org/MSEC/proceedings-abstract/MSEC2017/50756/V004T05A011/268670 - L
opes D., Puga H., Teixeira J.C., Teixeira S.F., Influence of arterial mechanical properties on carotid blood flow: Comparison of CFD and FSI studies, Int. J. Mech. Sci., 2019, 160, 209–218. - L
uo X., Du L., Li Z., Ultrasound assessment of tensile stress in carotid arteries of healthy human subjects with varying age, BMC Med. Imaging., 2019, 19 (1), 93. - M
ancini V., Bergersen A.W., Valen -Sendstad K., Segers P., Computed poststenotic flow instabilities correlate phenotypically with vibrations measured using laser doppler vibrometry: Perspectives for a promising in vivo device for early detection of moderate and severe carotid stenosis, J. Biomech. Eng., 2020, 142 (9). - M
c Gah P.M., Leotta D.F., Beach K.W., Aliseda A., Effects of wall distensibility in hemodynamic simulations of an arteriovenous fistula, Biomech. Model Mechanobiol., 2014, 13 (3), 679–695. - M
uha B., Čanić S., Existence of a solution to a fluid-multilayered-structure interaction problem, J. Differ. Equ., 2014, 256 (2), 658–706. - N
agy J., Fenz W., Thumfart S., Maier J., Major Z., Stefanits H. et al., Fluid structure Interaction analysis for rupture risk assessment in patients with middle cerebral artery aneurysms, Sci. Rep., 2025, 15 (1), 1965. - N
iemann A.K., Udesen J., Thrysoe S., Nygaard J.V., Fründ E.T., Petersen S.E. et al., Can sites prone to flow induced vascular complications in a-v fistulas be assessed using computational fluid dynamics?, J. Biomech., 2010, 43 (10), 2002–2009. - P
apadakis G., Raspaud J., Wave propagation in stenotic vessels; theoretical analysis and comparison between 3D and 1D fluid–structure-interaction models, J. Fluids Struct., 2019, Jul 1, 88, 352–366. - P
eirlinck M., Costabal F.S., Yao J., Guccione J.M., Tripathy S., Wang Y. et al., Precision medicine in human heart modeling: Perspectives, challenges, and opportunities. Vol. 20, Biomechanics and Modeling in Mechanobiology, Springer Science and Business Media Deutschland GmbH, 2021. p. 803–831. - R
ahman M.H., Gupta C., Computation of Rayleigh damping coefficient of a rectangular submerged floating tunnel (SFT), SN Appl. Sci., 2020, 2 (5), 936. - R
eymond P., Crosetto P., Deparis S., Quarteroni A., Stergiopulos N., Physiological simulation of blood flow in the aorta: Comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models, Med. Eng. Phys., 2013, 35 (6), 784–791. - R
ezazadeh M., Ostadi R., Numerical simulation of the wall shear stress distribution in a carotid artery bifurcation, Journal of Mechanical Science and Technology, 2022, 36 (10), 5035–5046. - S
andeep S., Shine S.R., Effect of stenosis and dilatation on the hemodynamic parameters associated with left coronary artery, Comput. Methods Programs Biomed., 2021, 204, 106052. - S
choenborn S., Lorenz T., Kuo K., Fletcher D.F., Woodruff M.A., Pirola S. et al., Fluid-structure interactions of peripheral arteries using a coupled in silico and in vitro approach, Comput. Biol. Med., 2023, 165. - S
ivanesan S., How T.V., Black R.A., Bakran A., Flow patterns in the radiocephalic arteriovenous fistula: An in vitro study, J. Biomech., 1999, 32 (9), 915–925. - S
oliveri L., Bruneau D., Ring J., Bozzetto M., Remuzzi A., Valen -Sendstad K., Toward a physiological model of vascular wall vibrations in the arteriovenous fistula, Biomech. Model Mechanobiol., 2024, 23, 1741–1755. - S
onntag S.J., Kaufmann T.A.S., Büsen M.R., Laumen M., Linde T., Schmitz -Rode T. et al., Simulation of a pulsatile total artificial heart: Development of a partitioned Fluid Structure Interaction model, J. Fluids Struct., 2013, 38, 187–204. - T
orii R., Oshima M., Kobayashi T., Takagi K., Tezduyar T.E., Influence of wall elasticity in patient-specific hemodynamic simulations, Comput. Fluids, 2007, 36 (1), 160–8. - W
iese P., Nonnast D.B., Colour doppler ultrasound in dialysis access, Nephrology Dialysis Transplantation, 2004, 19 (8), 1956–1963. - Z
hang Y., Chen D., Qian H., Chen Z., Fan F., Khoo B.C., An efficient partitioned framework to couple Arbitrary Lagrangian–Eulerian and meshless vector form intrinsic finite element methods for fluid-structure interaction problems with deformable structures, Appl. Math. Model, 2024, 130, 536–560. - Z
hu Y., Mirsadraee S., Rosendahl U., Pepper J., Xu X.Y., Fluid-Structure Interaction Simulations of Repaired Type A Aortic Dissection: a Comprehensive Comparison With Rigid Wall Models, Front. Physiol., 2022, Jun 14, 13.