Have a personal or library account? Click to login
Multiscale vibration response analysis and fatigue damage prediction after idiopathic scoliosis kyphosis surgery Cover

Multiscale vibration response analysis and fatigue damage prediction after idiopathic scoliosis kyphosis surgery

By: Yuxuan Zhang,  Rongchang Fu and  Pengju Li  
Open Access
|Dec 2025

References

  1. Basso N., Heersche J.N.M., Characteristics of in vitro osteoblastic cell loading models, Bone, 2002, 30 (2), 347–351, DOI: 10.1016/S8756-3282(01)00678-0.
  2. Chen C.S., Cheng C.K., Liu C.L., Lo W.H., Stress analysis of the disc adjacent to interbody fusion in lumbar spine, Med. Eng. Phys., 2001, 23 (7), 485–493, DOI: 10.1016/s1350-4533(01)00076-5.
  3. Chen J., Xu T., Zhou J., Han B., Wu Q., Jin W., Zhang X., The superiority of Schroth exercise combined brace treatment for mild-to-moderate adolescent idiopathic scoliosis: A systematic review and network meta-analysis, World Neurosurg., 2024, 186, 184–196.e9, DOI: 10.1016/j.wneu.2024.03.103.
  4. Chen K.J., The conduction of poroelastic mechanical signals from osteon to osteocyte scale, Master thesis, Taiyuan University of Technology, 2019 (in Chinese).
  5. Danielsson A.J., Natural history of adolescent idiopathic scoliosis: a tool for guidance in decision of surgery of curves above 50°, J. Child Orthop., 2013, 7 (1), 37–41, DOI: 10.1007/s11832-012-0462-7.
  6. Duncan R.L., Turner C.H., Mechanotransduction and the functional response of bone to mechanical strain, Calcif. Tissue Int., 1995, 57 (5), 344–358, DOI: 10.1007/BF00302070.
  7. Erbulut D.U., Zafarparandeh I., Lazoglu I., Ozer A.F., Application of an asymmetric finite element model of the C2-T1 cervical spine for evaluating the role of soft tissues in stability, Med. Eng. Phys., 2014, 36 (7), 915–921, DOI: 10.1016/j.medengphy.2014.02.020.
  8. Fang X., Zhao G., Wang C., Bai L., Yan W., Ma T., Establishment and analysis of finite element model of lumbar spine L4~L5 segment based on CT images, Chin. J. Biomed. Eng., 2014, 31 (4), 487–492, DOI: 10.3969/j.issn.0258-8021.2014.04.014 (in Chinese).
  9. Ganesh T., Laughrey L.E., Niroobakhsh M., Lara-Castillo N., Multiscale finite element modeling of mechanical strains and fluid flow in osteocyte lacunocanalicular system, Bone, 2020, 137, 115328, DOI: 10.1016/j.bone.2020.115328.
  10. Ghanbari J., Naghdabadi R., Nonlinear hierarchical multiscale modeling of cortical bone considering its nanoscale microstructure, J. Biomech., 2009, 42 (10), 1560–1565, DOI: 10.1016/j.jbiomech.2009.02.014.
  11. Haddock S.M., Yeh O.C., Mummaneni P.V., Rosenberg W.S., Keaveny T.M., Similarity in the fatigue behavior of trabecular bone across site and species, J. Biomech., 2004, 37 (2), 181–187, DOI: 10.1016/S0021-9290(03)00245-8.
  12. Koller H., Koller J., Mayer M., Hempfing A., Hitzl W., Osteotomies in ankylosing spondylitis: where, how many, and how much, Eur. Spine J., 2018, 27 (Suppl. 1), 70–100, DOI: 10.1007/s00586-017-5421-z.
  13. Kong W.Z., Goel V.K., Ability of the finite element models to predict response of the human spine to sinusoidal vertical vibration, Spine, 2003, 28 (17), 1961–1967, DOI: 10.1097/01.BRS.0000083236.33361.C5.
  14. Lafage V., Schwab F., Patel A., Hawkinson N., Farcy J.P., Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity, Spine, 2009, 34 (17), E599, DOI: 10.1097/BRS.0b013e3181aad219.
  15. Le P., Solomonow M., Zhou B.H., Lu Y., Patel V., Cyclic Load Magnitude is a Risk Factor for a Cumulative Lower Back Disorder, J. Occup. Environ. Med., 2007, 49 (4), 375–387, DOI: 10.1097/JOM.0b013e318046eb0b.
  16. Li P., Fu R., Yang X., Wang K., Chen H., Finite Element Method-Based Study for Spinal Vibration Characteristics of the Scoliosis and Kyphosis Lumbar Spine to Whole-Body Vibration Under a Compressive Follower Preload, Comput. Methods Biomech. Biomed. Engin., 2024, 1–10, DOI: 10.1080/10255842.2024.2333925.
  17. Li P., Fu R., Yang X., Wang K., Dynamic Response of Idiopathic Scoliosis and Kyphosis Spine, J. Shanghai Jiaotong Uni. (Sci.), 2025, 30 (3), 478–487, DOI: 10.1007/s12204-023-2635-6.
  18. Li X.F., Liu Z.D., Dai L.Y., Zhong G.B., Zang W.P., Dynamic response of the idiopathic scoliotic spine to axial cyclic loads, Spine, 2011, 36 (7), 521–528, DOI: 10.1097/BRS.0b013e3181d55fb0.
  19. Lievers W.B., Poljsak A.S., Waldman S.D., Pilkey A.K., Effects of dehydration-induced structural and material changes on the apparent modulus of cancellous bone, Med. Eng. Phys., 2010, 32 (8), 921–925, DOI: 10.1016/j.medengphy.2010.06.001.
  20. Liu Q., Zhang Q., Zhang C.Q., Wang A.G., Xu Z.C., Song S.X., Jia T.J., Li K., The effect of failure mechanics on the fatigue responses of lumbar intervertebral disc, J. Biomech., 2024, 176, 112363, DOI: 10.1016/j.jbiomech.2024.112363.
  21. Markolf K.L., Morris J.M., The structural components of the intervertebral disc. A study of their contributions to the ability of the disc to withstand compressive forces, J. Bone Joint Surg. Am., 1974, 56 (4), 675–687, DOI: 10.1111/j.1748-1716.1957.tb01378.x.
  22. Momeni Shahraki N., Fatemi A., Goel V.K., Agarwal A., On the Use of Biaxial Properties in Modeling Annulus as a Holzapfel–Gasser–Ogden Material, Front. Bioeng. Biotechnol., 2015, 3, 69, DOI:10.3389/fbioe.2015.00069.
  23. Nachemson A.L., Schultz A.B., Berkson M.H., Mechanical properties of human lumbar spine motion segments. Influence of age, sex, disc level, and degeneration, Spine, 1979, 4 (1), 1–8, DOI: 10.1097/00007632-197901000-00001.
  24. Panjabi M.M., Krag M.H., White A.A. 3rd, Southwick W.O., Effects of preload on load displacement curves of the lumbar spine, Orthop. Clin. North Am., 1977, 8 (1), 181192, DOI: 10.1016/S0030-5898(20)30944-5.
  25. Piekarski K, Munro M., Transport mechanism operating between blood supply and osteocytes in long bones, Nature, 1977, 269 (5623), 80–82, DOI: 10.1038/269080a0.
  26. Smit T.H., Huyghe J.M., Cowin S.C., Estimation of the poroelastic parameters of cortical bone, J. Biomech., 2002, 35 (6), 829–835, DOI: 10.1016/S0021-9290(02)00021-0.
  27. Tian H., Shi X.K., Distribution of body mass in young men in China, Journal of Jilin Medical College, 2001 (in Chinese).
  28. Wang C., Hu W., Li J., Hu F., Wang T., Zhang H., Wang Y., Hao Y., Zhang X., Wang Y., Progress in the study of commonly used posterior osteotomy styles for the treatment of spinal deformity, J. Spine Surg., 2018, 16 (6), 368–374 + 383, DOI: CNKI:SUN:JZWK.0.2018-06-012 (in Chinese).
  29. Wang L., Dong J., Xian C.J., Computational Investigation on the Biomechanical Responses of the Osteocytes to the Compressive Stimulus: A Poroelastic Model, Biomed. Res. Int., 2018, 4071356, DOI: 10.1155/2018/4071356.
  30. Wang Y., Dong H., Yan Y., Yu J., Wu X., Wang Y., Xue Y., Wang X., Wei X., Li P., Chen W., Biomechanical analysis of a lacunar-canalicular system under different cyclic displacement loading, Comput. Methods Biomech. Biomed. Engin., 2023, 26 (15), 1806–1821, DOI: 10.1080/10255842.2022.2145889.
  31. Wang Z., Fu R., Ma Y., Ye P., Macroscopic and mesoscopic biomechanical analysis of the bone unit in idiopathic scoliosis, J. Biomed. Eng., 2023, 40 (2), 303–312, DOI: 10.7507/1001-5515.202212053.
  32. Weinstein S.L., Zavala D.C., Ponseti I.V., Idiopathic scoliosis: long-term follow-up and prognosis in untreated patients, J. Bone Joint Surg. Am., 1981, 63 (5), 702, DOI: 10.2106/00004623-198163050-00003.
  33. Yamamoto I., Panjabi M.M., Crisco T., Oxland T., Threedimensional movements of the whole lumbar spine, Spine (Phila Pa 1976), 1989, 14 (11), 1256–1260, DOI: 10.1016/0021-9290(89)90523-X.
  34. Yan W., Zhao G., Fang X., Guo H., Ma T., Tu Y., Finite element modeling and analysis of human lumbar spine L4-5 segments, J. Biomed. Eng., 2014, 31 (3), 612–618, DOI: CNKI:SUN:SWGC.0.2014-03-028 (in Chinese).
  35. Yu W.L., Study on the Multi-scale Conduction Behavior of Fluid Stimulation in Loaded Bone, PhD thesis, Taiyuan University of Technology, 2020 (in Chinese).
  36. Zahaf S., Kebdani S., Ghalem M., Mestar A., Zina N., Aour B., Biomechanical evaluation of two posterior lumbar intervertebral fusion surgical scenarios reinforced by a rigid posterior fixation system in the vertebral column analyzed by the finite element method, Nano Biomed. Eng., 2018, 10 (3), 258–278, DOI: 10.5101/nbe.v10i3.p258-278.
  37. Zahaf S., Mansouri B., Belarbi A, Azari Z., The Effect of the Posterior Loading on the Spine of a School Child, Adv. Cancer Prev., 2016, 1 (3), 1000112, DOI: 10.4172/2472-0429.1000112.
  38. Zheng J., Weng L.Q., Shi M.Y., Zhou J., Hua L.C., Qian L.M., Zhou Z.R., Effect of water content on the nanomechanical properties and microtribological behaviour of human tooth enamel, Wear, 2013, 301 (1–2), 316–323, DOI: 10.1016/j.wear.2012.12.043
DOI: https://doi.org/10.37190/abb/208295 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 13 - 26
Submitted on: Jun 4, 2025
Accepted on: Jul 15, 2025
Published on: Dec 11, 2025
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Yuxuan Zhang, Rongchang Fu, Pengju Li, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.