References
- G
lowacki M., Ignys -O’Byrne A., Ignys I. et al., Limb shortening in the course of solitary bone cyst treatment – a comparative study, Skeletal. Radiol., 2011, 40, 173–179. - G
arcía -Martínez O., De Luna -Bertos E., Ramos - -Torrecillas J. et al., Repercussions of NSAIDS drugs on bone tissue: the osteoblast, Life Sci., 2015, 123, 72–77. - K
rischak G.D., Augat P., Blakytny R. et al., The non-steroidal anti-inflammatory drug diclofenac reduces appearance of osteoblasts in bone defect healing in rats, Arch. Orthop. Trauma Surg., 2007, 127, 453–458. - L
ee W.Y., Li N., Lin S. et al., miRNA-29b improves bone healing in mouse fracture model, Mol. Cell. Endocrinol., 2016, 430, 97–107. - G
uo S., Zhang M., Huang Y., Three ‘E’ challenges for siRNA drug development, Trends Mol. Med., 2024, 30, 13–24. - B
ai Y., Gong X., Dong R. et al., Long non-coding RNA HCAR promotes endochondral bone repair by upregulating VEGF and MMP13 in hypertrophic chondrocyte through sponging miR-15b-5p, Genes. Dis., 2022, 9, 456–465. - F
ang S.-H., Chen L., Chen H.-H. et al., MiR-15b ameliorates SONFH by targeting Smad7 and inhibiting osteogenic differentiation of BMSCs, Eur. Rev. Med. Pharmacol. Sci., 2019, 23, 9761–9771. - V
imalraj S., Partridge N.C., Selvamurugan N., A positive role of microRNA-15b on regulation of osteoblast differentiation, J. Cell. Physiol., 2014, 229, 1236–1244. - F
ranceschetti T., Dole N.S., Kessler C.B. et al., Pathway analysis of microRNA expression profile during murine osteoclastogenesis, PLoS One, 2014, 9, e107262. - S
mith S.S., Kessler C.B., Shenoy V. et al., IGF-I 3’ untranslated region: strain-specific polymorphisms and motifs regulating IGF-I in osteoblasts, Endocrinology, 2013, 154, 253–262. - X
u D., Gao Y., Hu N. et al., miR-365 Ameliorates Dexamethasone- Induced Suppression of Osteogenesis in MC3T3-E1 Cells by Targeting HDAC4, Int. J. Mol. Sci., 18. Epub ahead of print 4 May 2017, DOI: 10.3390/ijms18050977. - C
hen J., Wu X., Cyclic tensile strain promotes chondrogenesis of bone marrow-derived mesenchymal stem cells by increasing miR-365 expression, Life Sci., 2019, 232, 116625. - H
ou C., Zhang Y., Lv Z. et al., Macrophage exosomes modified by miR-365-2-5p promoted osteoblast osteogenic differentiation by targeting OLFML1, Regen. Biomater., 2024, 11, rbae018. - M
urakami K., Kikugawa S., Kobayashi Y. et al., Olfactomedin- like protein OLFML1 inhibits Hippo signaling and mineralization in osteoblasts, Biochem. Biophys. Res. Commun., 2018, 505, 419–425. - H
u N., Gao Y., Jayasuriya C.T. et al., Chondrogenic induction of human osteoarthritic cartilage-derived mesenchymal stem cells activates mineralization and hypertrophic and osteogenic gene expression through a mechanomiR, Arthritis Res. Ther., 2019, 21, 167. - L
ehmann T.P., Wojtków M., Pruszyńska -Oszmałek E. et al., Trabecular bone remodelling in the femur of C57BL/6J mice treated with diclofenac in combination with treadmill exercise, Acta Bioeng. Biomech., 2021, 23, 3–11. - L
eciejewska N., Pruszyńska -Oszmałek E., Mielnik K. et al., Spexin Promotes the Proliferation and Differentiation of C2C12 Cells In Vitro-The Effect of Exercise on SPX and SPX Receptor Expression in Skeletal Muscle In Vivo, Genes (Basel), 13. Epub ahead of print 28 December 2021, DOI: 10.3390/genes13010081. - L
ehmann T.P., Iwańczyk -Skalska E., Harasymczuk J. et al., Gene Expression in MC3T3-E1 Cells Treated with Diclofenac and Methylprednisolone, Genes (Basel), 14. Epub ahead of print 10 January 2023, DOI: 10.3390/genes14010184. - H
öbel S., Aigner A., Polyethylenimines for siRNA and miRNA delivery in vivo, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2013, 5, 484–501. - G
uan Y.-J., Yang X., Wei L. et al., MiR-365: a mechanosensitive microRNA stimulates chondrocyte differentiation through targeting histone deacetylase 4, FASEB J., 2011, 25, 4457–4466. - K
o J.Y., Chuang P.C., Ke H.J. et al., MicroRNA-29a mitigates glucocorticoid induction of bone loss and fatty marrow by rescuing Runx2 acetylation, Bone, 2015, 81, 80–88. - S
uttamanatwong S., MicroRNAs in bone development and their diagnostic and therapeutic potentials in osteoporosis, Connect. Tissue Res., 2017, 58, 90–102. - L
i Y., Wang J., Ma Y. et al., MicroRNA-15b shuttled by bone marrow mesenchymal stem cell-derived extracellular vesicles binds to WWP1 and promotes osteogenic differentiation, Arthritis Res. Ther., 2020, 22, 269. - V
imalraj S., Selvamurugan N., Regulation of proliferation and apoptosis in human osteoblastic cells by microRNA-15b, Int. J. Biol. Macromol., 2015, 79, 490–497. - S
hen R., Chen M., Wang Y.-J. et al., Smad6 interacts with Runx2 and mediates Smad ubiquitin regulatory factor 1-induced Runx2 degradation, J. Biol. Chem., 2006, 281, 3569–3576. - S
harma A.R., Lee Y.-H., Lee S.-S., Recent advancements of miRNAs in the treatment of bone diseases and their delivery potential, Current Research in Pharmacology and Drug Discovery, 2023, 4, 100150. - M
ori M.A., Ludwig R.G., Garcia -Martin R. et al., Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease, Cell. Metab., 2019, 30, 656–673. - X
ie X., Cheng P., Hu L. et al., Bone-targeting engineered small extracellular vesicles carrying anti-miR-6359-CGGGAGC prevent valproic acid-induced bone loss, Signal Transduct. Target Ther., 2024, 9, 24. - L
ehmann T.P., Golik M., Olejnik J. et al., Potential applications of using tissue-specific EVs in targeted therapy and vaccinology, Biomed. Pharmacother. 2023, 166, 115308. - Z
hang Q., Liu Y., Yuan Y. et al., miR-26a-5p protects against drug-induced liver injury via targeting bid, Toxicol. Mech. Methods, 2022, 32, 325–332.