Have a personal or library account? Click to login
Estimation of SLP/ILP parameters inside a female breast tumor during hyperthermia with mobilized and immobilized magnetic nanoparticles Cover

Estimation of SLP/ILP parameters inside a female breast tumor during hyperthermia with mobilized and immobilized magnetic nanoparticles

Open Access
|Aug 2025

References

  1. Acar B., Yilmaz Abdolsaheb T.U.B.A., Yapar A., Advanced hyperthermia treatment: optimizing microwave energy focus for breast cancer therapy, Turk. J. Electr. Eng. Comput. Sci., 2024, 32 (2), 268–284, DOI: 10.55730/1300-0632.4068.
  2. Ahamed K.P.S., Arunachalam K., Multifrequency operation of an intracavitary monopole with sliding broadband choke for delivering hyperthermia treatment with variable coverage, Electromagn. Biol. Med., 2024, 43 (4), 256–266, DOI: 10.1080/15368378.2024.2389068.
  3. Borges R., Souza A.C.S., Genova L.A., Machado JR J., Justo G.Z., Marchi J., Biocompatible glasses applied in cancer treatment: Magnetic hyperthermia and brachytherapy, Bioactive Glasses and Glass-Ceramics: Fundamentals and Applications, 2022, 537–579, DOI: 10.1002/9781119724193.ch22.
  4. Borkowska A.M., Chmiel P., Rutkowski P., Telejko M., Spalek M.J., Radiotherapy combined with locoregional hyperthermia for oligoprogression in metastatic melanoma local control, Ther. Adv. Med. Oncol., 2025, 17, DOI: 10.1177/17588359251316189.
  5. Boskovic N., Radjenovic B., Nikolic S., Radmilovic-Radjenovic M., Effectiveness of microwave ablation using two simultaneous antennas for liver malignancy treatment, Open Phys., 2024, 22 (1), DOI: 10.1515/phys-2024-0079.
  6. Zastrow E., Davis S.K., Lazebnik M., Kelcz F., Van Veen B.D., Hagness S.C., Database of 3D Grid-Based Numerical Breast Phantoms for use in Computational Electromagnetics Simulations, Department of Electrical and Computer Engineering University of Wisconsin-Madison, Available at website (27 May 2025): https://uwcem.ece.wisc.edu/MRIdatabase/InstructionManual.pdf
  7. Carriero S., Lanza C., Pellegrino G., Ascenti V., Sattin C., Pizzi C., Angileri S.A., Biondetti P., Ianniello A.A., Piacentino F., Lavorato R., Ierardi A.M., Carrafiello G., Ablative therapies for breast cancer: state of art, Technol. Cancer Res. Treat., 2023, 22, DOI: 10.1177/15330338231157193.
  8. Deipolyi A.R., Ward R.C., Riaz A., Vogl T.J., Simmons R.M., Pieper C.C., Bryce Y., Locoregional therapies for primary and metastatic breast cancer: AJR expert panel narrative review, Am. J. Roentgenol., 2024, 222 (2), DOI: 2214/AJR.23.29454.
  9. Fakhradini S.S., Mosharaf-Dehkordi M., Ahmadikia H., Improved liver cancer hyperthermia treatment and optimized microwave antenna power with magnetic nanoparticles, Heat and Mass Transfer, 2024, 60, 1235–1250, DOI: 10.1007/s00231-024-03489-6.
  10. Fuentes J.D.B., Morgan E., De Luna Aguilar A., Mafra A., Shah R., Giusti F., Vignat J., Znaor A., Musetti C., Yip C.-H., Van Eycken L., Jedy-Agba E., Pineros M., Soerjomataram I., Global stage distribution of breast cancer at diagnosis: a systematic review and meta-analysis, JAMA Oncol., 2024, 10 (1), 71–78, DOI: 10.1001/jamaoncol. 2023.4837.
  11. Fronya A.A., Donchenko D.V., Mavreshko E.I., Tupitsyn I.M., Grigoryeva M.S., Zavestovskaya I.N., Study of the Dynamics of Dissolution and Laser Heating of Germanium Nanoparticles, Bulletin of the Lebedev Physics Institute, 2024, 51 (12), 601–606, DOI: 10.3103/S1068335624601535.
  12. Gas P., Behavior of helical coil with water cooling channel and temperature dependent conductivity of copper winding used for MFH purpose, IOP Conf. Ser. Earth Environ. Sci., 2019, 214 (1), DOI: 10.1088/1755-1315/214/1/012124.
  13. Gas P., Miaskowski A., Influence of the radiofrequency applicators arrangement on the sizes of ablative zones inside hepatic tumor, Arch. Electr. Eng., 2024, 73 (3), 557–571, DOI: 10.24425/aee.2024.150883.
  14. Gas P., Miaskowski A., Numerical estimation of SAR and temperature distributions inside differently shaped female breast tumors during radio-frequency ablation, Materials, 2022, 16 (1), DOI: 10.3390/ma16010223.
  15. Gas P., Suleman M., Khaliq F., 3D computational modeling of Fe3O4@Au nanoparticles in hyperthermia treatment of skin cancer, Nanotechnol. Sci. Appl., 2025, 18, 173–196, DOI: 10.2147/NSA.S495377.
  16. Gas P., Miaskowski A., Specifying the ferrofluid parameters important from the viewpoint of magnetic fluid hyperthermia, 2015 Selected Problems of Electrical Engineering and Electronics (WZEE), 2015, 1–6, DOI: 10.1109/WZEE.2015.7394040.
  17. Harmon B.V., Forster T.H., Collins R.J., Hyperthermia- induced apoptosis, Programmed Cell Death, 2024, 297–314.
  18. Hasgall P.A., Di Gennaro F., Baumgartner C., Neufeld E., Lloyd B., Gosselin M.C., Payne D., Klingenbock A., Kuster N., IT’IS database for thermal and electromagnetic parameters of biological tissues, IT’IS Foundation, 2022, version 4.1, DOI: 10.13099/VIP21000-04-1.
  19. Hsseinimotlagh S.N., Fereshteh M., Shakeri A., Mokhtari M., Rasti F., Zarei M.A., Modeling of heat transfer to different human cancerous tissues using magnetic nanoparticles, Degres J., 2024, 9 (8), 89–102, DOI: 12.1789001.DEJ. 2024.V9I8.24.411837.
  20. Iacob N., Pitfalls and challenges in specific absorption rate evaluation for functionalized and coated magnetic nanoparticles used in magnetic fluid hyperthermia, Coatings, 2025, 15 (3), DOI: 10.3390/coatings15030345.
  21. Imanlou S., Vafai K., Hyperthermia applications in cardiovascular and cancer therapy treatments, Adv. Heat Transf., 2024, 57, 71–99, DOI: 10.1016/bs.aiht.2024.02.002.
  22. Kazemi Alouti A., Raouf I., Zahabi S., Salimibani M., Numerical study of magnetic nanoparticles injection into a brain tumor considering the effects of injection volume and location on the termination of cancerous cells, Biointerphases, 2024, 19 (6), DOI: 10.1116/6.0003814.
  23. Kim D., Kim H., Optimal condition confirmation of treatment conditions through analysis of intratumoral apoptotic temperature range of microwave ablation for various microwave frequencies and antenna insertion depth, Sci. Prog., 2024, 107 (4), DOI: 10.1177/00368504241300855.
  24. Kshatriya V.V., Kumbhare M.R., Jadhav S.V., Thorat P.J., Bhambarge R.G., A review on electromedicine its various properties and emerging application in various fields, Intell. Pharm., 2024, 6, 777–783, DOI: 10.1016/j.ipha.2024.05.001.
  25. Mamiya H., Recent advances in understanding magnetic nanoparticles in AC magnetic fields and optimal design for targeted hyperthermia, J. Nanomater., 2013, 2013, DOI: 10.1155/2013/752973.
  26. Mansor Hassan M., Lias K., Buniyamin N., Ahmad Narihan M.Z., Sheikh Naimullah B.S., Mohamed Basri H., Alam S., SAR distribution with different water bolus shapes for hyperthermia breast cancer treatment, J. Adv. Res. Fluid Mech. Therm. Sci., 2025, 128 (1), 32–47, DOI: 10.37934/arfmts.128.1.3247.
  27. Maxwell J.C., VIII. A dynamical theory of the electromagnetic field, Philos. Trans R. Soc. Lond., 1865, 155, 459–512, DOI: 10.1098/rstl.1865.0008.
  28. Miaskowski A., Gas P., Modelling of temperature distribution in anatomically correct female breast cancer, Prz. Elektrotechniczn., 2022, 99 (2), 218–221, DOI: 10.15199/48.2023.02.42.
  29. Miaskowski A., Sawicki B., Subramanian M., Single-domain nanoparticle magnetic power losses calibrated with calorimetric measurements, Bull. Pol. Acad. Sci. Tech. Sci., 2018, 66 (4), 509–516, DOI: 10.24425/123928.
  30. Miaskowski A., Subramanian M., Numerical model for magnetic fluid hyperthermia in a realistic breast phantom: calorimetric calibration and treatment planning, Int. J. Mol. Sci., 2019, 20 (18), DOI: 10.3390/ijms20184644.
  31. Michalowska-Samonek J., Miaskowski A., Wac-Wlodarczyk A., Numerical analysis of high frequency electromagnetic field distribution and specific absorption rate in realistic breast models, Prz. Elektrotechniczn., 2012, 88 (12b), 97–99.
  32. Nain S., Kumar N., Avti P.K., Effect of arterial blood flow on magnetic nanoparticle thermo-therapy applied on a realistic breast tumor model, Int. J. Numer. Methods Biomed. Eng., 2025, 41 (4), DOI: 10.1002/cnm.70039.
  33. Noeren J., Gotz T.D., Elbracht L., Parspour N., Quality factor comparison of pipe coils in wireless charging applications, IEEE Wireless Power Technol. Conf. Expo (WPTCE), 2024, 816–820, DOI: 10.1109/WPTCE59894.2024.10557435.
  34. Overgaard J., Hulshof M.C., Dahl O., Arcangeli G., Hyperthermia as an adjuvant to radiation therapy in the treatment of locally advanced breast carcinoma, Radiother. Oncol., 2024, 196, DOI: 10.1016/j.radonc.2024.110313.
  35. Paruch M., Hyperthermia process control induced by the electric field in order to cancer destroying, Acta Bioeng. Biomech., 2014, 16 (4), 123–130, DOI: 10.5277/ABB-00075-2014-02.
  36. Pennes H.H., Analysis of tissue and arterial blood temperatures in the resting human forearm, J. Appl. Physiol., 1998, 85 (1), 5–34, DOI: 10.1152/jappl.1998.85.1.5.
  37. Pilpilidis K., Tsanidis G., Rouni M.A., Markakis J., Samaras T., Revisiting the safety limit in magnetic nanoparticle hyperthermia: insights from eddy current induced heating, Phys. Med. Biol., 2025, 70 (3), DOI: 10.1088/1361-6560/adaad0.
  38. Pinto Garcia E., Cepeda Rubio M.F.J., Guerrero Lopez G.D., Segura Felix K., Hernandez Jaquez J.I., Flores Garcia F., Impact of breast tissue heterogeneity on microwave ablation performance: insights from computational modeling, Curr. Cancer Ther. Rev., 2025, 21 (4), 57–585, DOI: 10.2174/0115733947299809240804192844.
  39. Rahpeima R., Lin C.A., Numerical study of magnetic hyperthermia ablation of breast tumor on an anatomically realistic breast phantom, PLoS One, 2022, 17 (9), DOI: 10.1371/journal.pone.0274801.
  40. Raouf I., Gas P., Kim H.S., Advances in finite element analysis for cancer therapy focusing on magnetic nanoparticle hyperthermia, Multiscale Sci. Eng., 2024, 6 (2–3), 113–123, DOI: 10.1007/s42493-024-00116-8.
  41. Raouf I., Gas P., Kim H.S., Numerical investigation of ferrofluid preparation during in-vitro culture of cancer therapy for magnetic nanoparticle hyperthermia, Sensors, 2021, 21 (16), DOI: 10.3390/s21165545.
  42. Riaz S., Ali S., Summer M., Akhtar U., Noor S., Haqqi R., Farooq M.A., Sardar I., Multifunctional magnetic nanoparticles for targeted drug delivery against cancer: a review of mechanisms, applications, consequences, limitations, and tailoring strategies, Ann. Biomed. Eng., 2025, DOI: 10.1007/s10439-025-03712-3.
  43. Rosensweig R.E., Heating magnetic fluid with alternating magnetic field, J. Magn. Magn. Mater., 2002, 252, 370–374, DOI: 10.1016/S0304-8853(02)00706-0.
  44. SIM4LIFE, Manual, Version 6.2, Zurich MedTech AG, Zurich, Switzerland, 2021, https://sim4life.swiss/
  45. Subramanian M., Miaskowski A., Pearce G., Dobson J., A coil system for real-time magnetic fluid hyperthermia microscopy studies, Int. J. Hyperthermia, 2016, 32 (2), 112–120, DOI: 10.3109/02656736.2015.1104732.
  46. Sun R., Chen H., Wang M., Yoshitomi T., Takeguchi M., Kawazoe N., Yang Y., Chen G., Smart composite scaffold to synchronize magnetic hyperthermia and chemotherapy for efficient breast cancer therapy, Biomaterials, 2024, 307, DOI: 10.1016/j.biomaterials.2024.122511.
  47. Szwed M., Marczak A., Application of nanoparticles for magnetic hyperthermia for cancer treatment–the current state of knowledge, Cancers, 2024, 16 (6), DOI: 10.3390/cancers16061156.
  48. Tarasevych Y., Szczech M., Comparative study of models and a new model of ferrofluid viscosity under magnetic fields and various temperatures, Tribologia, 2024, 307 (1), 135–145, DOI: 10.5604/01.3001.0054.4666.
  49. Wang L.X., Kong X.Y., Zhou T.J., A computational study on effects of PID temperature target and RF frequency for PIDcontrolled nonablative RF cosmetic systems, Lasers Surg. Med., 2024, 56 (10), 865–879, DOI: 10.1002/lsm.23855.
  50. Xing X., Song C., A novel electrode to achieve balance between anastomotic strength and tissue thermal damage for radiofrequency- induced intestinal anastomosis, Acta Bioeng. Biomech,, 2023, 25 (3), 3–13, DOI: 10.5277/ABB-00278-2015-04.
  51. Yamazaki A., Kagami T., Kuwahata A., Yabukami S., Development of magnetic hyperthermia coil system for wide treatment temperature area on neck and breast cancer models, IEEE Trans. Magn., 2025, DOI: 10.1109/TMAG. 2025.3551775.
  52. Zhang C., Shi J., Li B., Yu X., Feng X., Yang H., Magnetic resonance imaging-guided radiofrequency ablation of breast cancer: a current state of the art review, Diagn. Interv. Radiol., 2024, 30 (1), 48–54, DOI: 10.4274/dir.2022.221429.
DOI: https://doi.org/10.37190/abb/207306 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 159 - 169
Submitted on: Apr 28, 2025
Accepted on: Jun 18, 2025
Published on: Aug 26, 2025
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Arkadiusz Miaskowski, Piotr Gas, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.