Charrier E.E., Pogoda K., Li R., Park C.Y., Fredberg J.J., Janmey P.A., A novel method to make viscoelastic polyacrylamide gels for cell culture and traction force microscopy, APL Bioeng., 2020, 4 (3), 036104.
Charrier E.E., Pogoda K., Wells R.G., Janmey P.A., Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation, Nat. Commun., 2018, 9 (1), 449.
Gong Z., Szczesny S.E., Caliari S.R., Charrier E.E., Chaudhuri O., Cao X. et al., Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates, Proc. Natl. Acad. Sci., 2018, 115 (12).
Guo M., Pegoraro A.F., Mao A., Zhou E.H., Arany P.R., Han Y. et al., Cell volume change through water efflux impacts cell stiffness and stem cell fate, Proc. Natl. Acad. Sci., 2017, 114 (41).
Hall M.S., Alisafaei F., Ban E., Feng X., Hui C.Y., Shenoy V.B. et al., Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs, Proc. Natl. Acad. Sci., 2016, 113 (49), 14043–14048.
Karim A., Hall A.C., Chondrocyte Morphology in Stiff and Soft Agarose Gels and the Influence of Fetal Calf Serum, J. Cell. Physiol., 2017, 232 (5), 1041–1052.
Lee J.P., Kassianidou E., MacDonald J.I., Francis M.B., Kumar S., N-terminal specific conjugation of extracellular matrix proteins to 2-pyridinecarboxaldehyde functionalized polyacrylamide hydrogels, Biomaterials, 2016, 102, 268–276.
Lu P., Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions, Signal Transduct. Target Ther., 2024, .
Milos F., Del Campo A., Polyacrylamide Hydrogels as Versatile Biomimetic Platforms to Study Cell‐Materials Interactions, Adv. Mater Interfaces, 2024, 11 (34), 2400404.
Nasrollahi S., Walter C., Loza A.J., Schimizzi G.V., Longmore G.D., Pathak A., Past matrix stiffness primes epithelial cells and regulates their future collective migration through a mechanical memory, Biomaterials, 2017, 146, 146–155.
Pogoda K., Charrier E., Janmey P., A Novel Method to Make Polyacrylamide Gels with Mechanical Properties Resembling those of Biological Tissues, BIO-Protoc., 2021, 11 (16).
Protick F.K., Amit S.K., Amar K., Nath S.D., Akand R., Davis V.A. et al., Additive Manufacturing of Viscoelastic Polyacrylamide Substrates for Mechanosensing Studies, ACS Omega, 2022, 7 (28), 24384–24395.
Samanta H.S., Ray S.K., Synthesis, characterization, swelling and drug release behavior of semi-interpenetrating network hydrogels of sodium alginate and polyacrylamide, Carbohydr. Polym., 2014, 99, 666–678.
Shi Y., Li J., Xiong D., Li L., Liu Q., Mechanical and tribological behaviors of PVA / PAAMdouble network hydrogels under varied strains as cartilage replacement, J. Appl. Polym. Sci., 2021, 138 (16), 50226.
Sobhanian P., Khorram M., Hashemi S.S., Mohammadi A., Development of nanofibrous collagen-grafted poly (vinyl alcohol)/gelatin/alginate scaffolds as potential skin substitute, Int. J. Biol. Macromol., 2019, 130, 977–987.
Sternik D., Szewczuk-Karpisz K., Siryk O., Samchenko Y., Derylo-Marczewska A., Kernosenko L. et al., Structure and thermal properties of acrylic copolymer gels: effect of composition and cross-linking method, J. Therm. Anal. Calorim., 2024, 149 (17), 9057–9072.
Zanotelli M.R., Goldblatt Z.E., Miller J.P., Bordeleau F., Li J., VanderBurgh J.A. et al., Regulation of ATP utilization during metastatic cell migration by collagen architecture, Garcia A.J. (ed.), Mol. Biol. Cell., 2018, 29 (1), 1–9.