Have a personal or library account? Click to login
Quantitative analysis of stress relaxation in polyacrylamide hydrogels for mechanobiological studies Cover

Quantitative analysis of stress relaxation in polyacrylamide hydrogels for mechanobiological studies

Open Access
|Aug 2025

References

  1. Basu A., Wen Q., Mao X., Lubensky T.C., Janmey P.A., Yodh A.G., Nonaffine Displacements in Flexible Polymer Networks, Macromolecules, 2011, 44 (6), 1671–1679.
  2. Bonfanti A., Kaplan J.L., Charras G., Kabla A., Fractional viscoelastic models for power-law materials, Soft Matter., 2020, 16 (26), 6002–6020.
  3. Charrier E.E., Pogoda K., Li R., Park C.Y., Fredberg J.J., Janmey P.A., A novel method to make viscoelastic polyacrylamide gels for cell culture and traction force microscopy, APL Bioeng., 2020, 4 (3), 036104.
  4. Charrier E.E., Pogoda K., Wells R.G., Janmey P.A., Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation, Nat. Commun., 2018, 9 (1), 449.
  5. Chaudhuri O., Effects of extracellular matrix viscoelasticity on cellular behaviour.
  6. Chaudhuri O., Cooper-White J., Janmey P.A., Mooney D.J., Shenoy V.B., The impact of extracellular matrix viscoelasticity on cellular behavior, 2021, .
  7. Cong H., Wang P., Yu S., Highly Elastic and Superstretchable Graphene Oxide/Polyacrylamide Hydrogels, Small., 2014, 10 (3), 448–453.
  8. Engler A.J., Richert L., Wong J.Y., Picart C., Discher D.E., Surface probe measurements of the elasticity of sectioned tissue, thin gels and polyelectrolyte multilayer films: Correlations between substrate stiffness and cell adhesion, Surf. Sci., 2004, 570 (1–2), 142–154.
  9. Engler A.J., Sen S., Sweeney H.L., Discher D.E., Matrix Elasticity Directs Stem Cell Lineage Specification, Cell., 2006, 126 (4), 677–689.
  10. Gong Z., Szczesny S.E., Caliari S.R., Charrier E.E., Chaudhuri O., Cao X. et al., Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates, Proc. Natl. Acad. Sci., 2018, 115 (12).
  11. Guo M., Pegoraro A.F., Mao A., Zhou E.H., Arany P.R., Han Y. et al., Cell volume change through water efflux impacts cell stiffness and stem cell fate, Proc. Natl. Acad. Sci., 2017, 114 (41).
  12. Hall M.S., Alisafaei F., Ban E., Feng X., Hui C.Y., Shenoy V.B. et al., Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs, Proc. Natl. Acad. Sci., 2016, 113 (49), 14043–14048.
  13. Jafari A., Amirsadeghi A., Hassanajili S., Azarpira N., Bioactive antibacterial bilayer PCL/gelatin nanofibrous scaffold promotes full-thickness wound healing, Int. J. Pharm., 2020, 583, 119413.
  14. Jafari A., Hassanajili S., Ghaffari F., Azarpira N., Modulating the physico-mechanical properties of polyacrylamide/gelatin hydrogels for tissue engineering application, Polym. Bull., 2022, 79 (3), 1821–1842.
  15. Janmey P.A., Fletcher D.A., Reinhart-King C.A., Stiffness Sensing by Cells, Physiol. Rev., 2020, 100 (2), 695–724.
  16. Karim A., Hall A.C., Chondrocyte Morphology in Stiff and Soft Agarose Gels and the Influence of Fetal Calf Serum, J. Cell. Physiol., 2017, 232 (5), 1041–1052.
  17. Kechagia J.Z., Ivaska J., Roca-Cusachs P., Integrins as biomechanical sensors of the microenvironment, Nat. Rev. Mol. Cell. Biol., 2019, 20 (8), 457–473.
  18. Lee J.P., Kassianidou E., MacDonald J.I., Francis M.B., Kumar S., N-terminal specific conjugation of extracellular matrix proteins to 2-pyridinecarboxaldehyde functionalized polyacrylamide hydrogels, Biomaterials, 2016, 102, 268–276.
  19. Lu P., Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions, Signal Transduct. Target Ther., 2024, .
  20. Mavrakis M., Juanes M.A., The compass to follow: Focal adhesion turnover, Curr. Opin. Cell. Biol., 2023, 80, 102152.
  21. Milos F., Del Campo A., Polyacrylamide Hydrogels as Versatile Biomimetic Platforms to Study Cell‐Materials Interactions, Adv. Mater Interfaces, 2024, 11 (34), 2400404.
  22. Narasimhan B.N., Horrocks M.S., Malmström J., Hydrogels with Tunable Physical Cues and Their Emerging Roles in Studies of Cellular Mechanotransduction, Adv. NanoBiomed. Res., 2021, 1 (10), 2100059.
  23. Nasrollahi S., Walter C., Loza A.J., Schimizzi G.V., Longmore G.D., Pathak A., Past matrix stiffness primes epithelial cells and regulates their future collective migration through a mechanical memory, Biomaterials, 2017, 146, 146–155.
  24. Pogoda K., Charrier E., Janmey P., A Novel Method to Make Polyacrylamide Gels with Mechanical Properties Resembling those of Biological Tissues, BIO-Protoc., 2021, 11 (16).
  25. Protick F.K., Amit S.K., Amar K., Nath S.D., Akand R., Davis V.A. et al., Additive Manufacturing of Viscoelastic Polyacrylamide Substrates for Mechanosensing Studies, ACS Omega, 2022, 7 (28), 24384–24395.
  26. Sala S., Caillier A., Oakes P.W., Principles and regulation of mechanosensing, J. Cell. Sci., 2024, 137 (18), jcs261338.
  27. Samanta H.S., Ray S.K., Synthesis, characterization, swelling and drug release behavior of semi-interpenetrating network hydrogels of sodium alginate and polyacrylamide, Carbohydr. Polym., 2014, 99, 666–678.
  28. Shi L., Lim J.Y., Kam L.C., Substrate stiffness enhances human regulatory T cell induction and metabolism, Biomaterials, 2023, 292, 121928.
  29. Shi Y., Li J., Xiong D., Li L., Liu Q., Mechanical and tribological behaviors of PVA / PAAM double network hydrogels under varied strains as cartilage replacement, J. Appl. Polym. Sci., 2021, 138 (16), 50226.
  30. Sobhanian P., Khorram M., Hashemi S.S., Mohammadi A., Development of nanofibrous collagen-grafted poly (vinyl alcohol)/gelatin/alginate scaffolds as potential skin substitute, Int. J. Biol. Macromol., 2019, 130, 977–987.
  31. Solowiej-Wedderburn J., Dunlop C.M., Sticking around: Cell adhesion patterning for energy minimization and substrate mechanosensing, Biophys. J., 2022, 121 (9), 1777–1786.
  32. Sternik D., Szewczuk-Karpisz K., Siryk O., Samchenko Y., Derylo-Marczewska A., Kernosenko L. et al., Structure and thermal properties of acrylic copolymer gels: effect of composition and cross-linking method, J. Therm. Anal. Calorim., 2024, 149 (17), 9057–9072.
  33. Tilghman R.W., Cowan C.R., Mih J.D., Koryakina Y., Gioeli D., Slack-Davis J.K. et al., Matrix Rigidity Regulates Cancer Cell Growth and Cellular Phenotype, Hotchin N.A. (ed.), PLoS ONE, 2010, 5 (9), e12905.
  34. Tusan C.G., Man Y.H., Zarkoob H., Johnston D.A., Andriotis O.G., Thurner P.J. et al., Collective Cell Behavior in Mechanosensing of Substrate Thickness, Biophys. J., 2018, 114 (11), 2743–2755.
  35. Wan K.Y., Jékely G., Origins of eukaryotic excitability, Philos. Trans. R. Soc. B. Biol. Sci., 2021, 376 (1820), 20190758.
  36. Zanotelli M.R., Goldblatt Z.E., Miller J.P., Bordeleau F., Li J., VanderBurgh J.A. et al., Regulation of ATP utilization during metastatic cell migration by collagen architecture, Garcia A.J. (ed.), Mol. Biol. Cell., 2018, 29 (1), 1–9.
  37. Zhang J., Hochwald S.N., The role of FAK in tumor metabolism and therapy, Pharmacol. Ther., 2014, 142 (2), 154–163.
  38. Zhang Q., Gu X., Yu Z., Liang J., Dong Q., Viscoelastic Damage Characteristics of Asphalt Mixtures Using Fractional Rheology, Materials, 2021, 14 (19), 5892.
  39. Zhou H., Liu R., Xu Y., Fan J., Liu X., Chen L. et al., Viscoelastic mechanics of living cells, Phys. Life Rev., 2025, 53, 91–116.
DOI: https://doi.org/10.37190/abb/207129 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 147 - 157
Submitted on: Apr 30, 2025
Accepted on: Jun 13, 2025
Published on: Aug 26, 2025
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Dawid Łysik, Paulina Dziemiańczyk, Joanna Mystkowska, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.