Have a personal or library account? Click to login
Radiopaque polycaprolactone/barium sulfate nanofibers for applications in soft tissue repair Cover

Radiopaque polycaprolactone/barium sulfate nanofibers for applications in soft tissue repair

Open Access
|Aug 2025

References

  1. Adolph W., Taplin G.V., Use of Micropulverized Barium Sulfate in X-Ray Diagnosis: A Preliminary Report, Radiology, 1950, 54 (6), 878–883, DOI: 10.1148/54.6.878.
  2. Aviv H., Bartling S., Kieslling F., Margel S., Radiopaque iodinated copolymeric nanoparticles for X-ray imaging applications, Biomaterials, 2009, 30 (29), 5610–5616, DOI: 10.1016/j.biomaterials.2009.06.038.
  3. Azimi B., Nourpanah P., Rabiee M., Arbab S., Poly (ε-caprolactone) Fiber: An Overview, J. Eng. Fibers Fabr., 2014, 9 (3), DOI: 10.1177/155892501400900309.
  4. Álvarez-Carrasco F. et al., Development of Bioactive Hybrid Poly(lactic acid)/Poly(methyl methacrylate) (PLA/PMMA) Electrospun Fibers Functionalized with Bioglass Nanoparticles for Bone Tissue Engineering Applications, IJMS, 2024, 25 (13), 6843, DOI: 10.3390/ijms25136843.
  5. Causa F., Battista E., Della Moglie R, Guarnieri D., Iannone M., Netti P.A., Surface Investigation on Biomimetic Materials to Control Cell Adhesion: The Case of RGD Conjugation on PCL, Langmuir, 2010, 26 (12), 9875–9884, DOI: 10.1021/la100207q.
  6. Cava D., Gavara R., Lagarón J.M., Voelkel A., Surface characterization of poly(lactic acid) and polycaprolactone by inverse gas chromatography, J. Chromatogr. A, 2007, 1148 (1), 86–91, DOI: 10.1016/j.chroma.2007.02.110.
  7. Chen M.-S. et al., Radiopacity performances of precipitated ZrO2-doped Bi2O3 powders and the influences of dopant concentrations and sintering temperatures, Ceram. Int., 2017, 43 (16), 14008–14014, DOI: 10.1016/j.ceramint.2017.07.132.
  8. Galperin A., Margel D., Baniel J., Dank G., Biton H., Margel S., Radiopaque iodinated polymeric nanoparticles for X-ray imaging applications, Biomaterials, 2007, 28 (30), 4461–4468, DOI: 10.1016/j.biomaterials.2007.06.032.
  9. Graciano Alvarez A.K. et al., Electrospinning Poly(acrylonitrile) Containing Magnetite Nanoparticles: Influence of Magnetite Contents, Fibers, 2024, 12 (3), 19, DOI: 10.3390/fib12030019.
  10. Górecka Ż., Choińska E., Heljak M., Święszkowski W., Long-Term In Vitro Assessment of Biodegradable Radiopaque Composites for Fiducial Marker Fabrication, IJMS, 2022, 23 (22), 14363, DOI: 10.3390/ijms232214363.
  11. Górecka Ż. et al., Biodegradable fiducial markers for X-ray imaging – soft tissue integration and biocompatibility, J. Mater. Chem. B, 2016, 4 (34), 5700–5712, DOI: 10.1039/C6TB01001F.
  12. Holmes J., Hafiz Y., Stachurski Z., Das R., Kalyanasundaram S., Surface topography evolution of woven thermoplastic composites under deformation, Composites Part B: Engineering, 2022, 188, 107880, DOI: 10.1016/j.compositesb.2020.107880.
  13. Ji Y., Liang K., Shen X., Bowlin G.L., Electrospinning and characterization of chitin nanofibril/polycaprolactone nanocomposite fiber mats, Carbohydr. Polym., 2014, 101, 68–74, DOI: 10.1016/j.carbpol.2013.09.012.
  14. Karbowniczek J.E., Ura D.P., Stachewicz U., Nanoparticles distribution and agglomeration analysis in electrospun fiber based composites for desired mechanical performance of poly(3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) scaffolds with hydroxyapatite (HA) and titanium dioxide (TiO2) towards medical applications, Composites, Part B, 2022, 241, 110011, DOI: 10.1016/j.compositesb.2022. 110011.
  15. Kasuga T., Ota Y., Nogami M., Abe Y., Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers, Biomaterials, 2001, 22 (1), 19–23, DOI: 10.1016/S0142-9612(00)00091-0.
  16. Kerans R.J., Jero P.D., Parthasarathy T.A., Issues in the control of fiber/matrix interfaces in ceramic composites, Compos. Sci. Technol., 1994, 51 (2), 291–296, DOI: 10.1016/0266-3538(94)90198-8.
  17. Ketegenov T., Kamunur K., Batkal A., Gani D., Nadirov R., Recent Advances in the Preparation of Barium Sulfate Nanoparticles: A Mini-Review, ChemEngineering, 2022, 6 (2), 30, DOI: 10.3390/chemengineering6020030.
  18. Kiran S., James N.R., Joseph R., Jayakrishnan A., Synthesis and characterization of iodinated polyurethane with inherent radiopacity, Biomaterials, 2009, 30 (29), 5552–5559, DOI: 10.1016/j.biomaterials.2009.06.049.
  19. Konduru N. et al., Biokinetics and effects of barium sulfate nanoparticles, Part Fibre Toxicol, 2014, 11 (1), 55, DOI: 10.1186/s12989-014-0055-3.
  20. Kruft M.A.B. et al., Studies on two new radiopaque polymeric biomaterials, J. Biomed. Mater. Res., 1994, 28 (11), 1259–1266, DOI: 10.1002/jbm.820281103.
  21. Leitune V.C.B., Collares F.M., Trommer R.M., Andrioli D.G., Bergmann C.P., Samuel S.M.W., The addition of nanostructured hydroxyapatite to an experimental adhesive resin, J. Dent., 2013, 41 (4), 321–327, DOI: 10.1016/j.jdent.2013.01.001.
  22. Martins A.F. et al., Novel poly(ε -caprolactone)/aminofunctionalized tannin electrospun membranes as scaffolds for tissue engineering, J. Colloid Interface Sci., 2018, 525, 21–30, DOI: 10.1016/j.jcis.2018.04.060.
  23. Ma Y. et al., Self-Powered, One-Stop, and Multifunctional Implantable Triboelectric Active Sensor for Real-Time Biomedical Monitoring, Nano Lett., 2016, 16 (10), 6042–6051, DOI: 10.1021/acs.nanolett.6b01968.
  24. Mottu F., Rüfenacht D.A., Doelker E., Radiopaque Polymeric Materials for Medical Applications: Current Aspects of Biomaterial Research, Invest. Radiol., 1999, 34 (5), 323, DOI: 10.1097/00004424-199905000-00001.
  25. No Y.J., Roohani‐Esfahani S., Lu Z., Schaer T., Zreiqat H., Injectable radiopaque and bioactive polycaprolactone-ceramic composites for orthopedic augmentation, J. Biomed. Mater. Res., 2015, 103 (7), 1465–1477, DOI: 10.1002/jbm.b.33336.
  26. Oyama Y., Kurokawa N., Hotta A., Multifunctionality of Iodinated Halogen-Bonded Polymer: Biodegradability, Radiopacity, Elasticity, Ductility, and Self-Healing Ability, ACS Biomater. Sci. Eng., 2023, 9 (11), 6094–6102, DOI: 10.1021/acsbiomaterials.3c01075.
  27. Qi H., Hu P., Xu J., Wang A., Encapsulation of Drug Reservoirs in Fibers by Emulsion Electrospinning: Morphology Characterization and Preliminary Release Assessment, Biomacromolecules, 2006, 7 (8), 2327–2330, DOI: 10.1021/bm060264z.
  28. Rae T., Tolerance of mouse macrophages in vitro to barium sulfate used in orthopedic bone cement, J. Biomed. Mater. Res., 1977, 11 (6), 839–846, DOI: 10.1002/jbm.820110604.
  29. Rivero P.J. et al., Modeling Experimental Parameters for the Fabrication of Multifunctional Surfaces Composed of Electrospun PCL/ZnO-NPs Nanofibers, Polymers, 2021, 13 (24), 4312, DOI: 10.3390/polym13244312.
  30. Rnjak-Kovacina J. et al., Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering, Biomaterials, 2011, 32 (28), 6729–6736, DOI: 10.1016/j.biomaterials.2011.05.065.
  31. Samuel R. et al., Radiopaque poly(ε-caprolactone) as additive for X-ray imaging of temporary implantable medical devices, RSC Adv., 2015, 5 (102), 84125–84133, DOI: 10.1039/C5RA19488A.
  32. Santos F.N.D. et al., Antimicrobial activity of geranium (Pelargonium graveolens) essential oil and its encapsulation in carioca bean starch ultrafine fibers by electrospinning, Int. J. Biol. Macromol., 2024, 265, 130953, DOI: 10.1016/j.ijbiomac.2024.130953.
  33. Shiralizadeh S., Nasr-Isfahani H., Keivanloo A., Bakherad M., Yahyaei B., Pourali P., Preparation of radiopaque polyurethane–urea/graphene oxide nanocomposite using 4-(4-iodophenyl)-1,2,4-triazolidine-3,5-dione, J. Mater. Sci., 2018, 53 (14), 9896–9912, DOI: 10.1007/s10853-018-2286-4.
  34. Soundhirarajan P. et al., Spectroscopic and non-spectroscopic analysis of Fe-substituted BaSO4 nanoparticles by chemical precipitation method, J. Mater. Sci.: Mater. Electron., 2024, 35 (19), 1288, DOI: 10.1007/s10854-024-13092-4.
  35. Stastna E., Castkova K., Rahel J., Influence of Hydroxyapatite Nanoparticles and Surface Plasma Treatment on Bioactivity of Polycaprolactone Nanofibers, Polymers, 2020, 12 (9), 1877, DOI: 10.3390/polym12091877.
  36. Thakare V.G., Joshi P.A., Godse R.R., Bhatkar V.B., Wadegaokar P.A., Omanwar S.K., Fabrication of polycaprolactone/zirconia nanofiber scaffolds using electrospinning technique, J. Polym. Res., 2017, 24 (12), 232, DOI: 10.1007/s10965-017-1388-z.
  37. Torchilin V., Polymeric Contrast Agents for Medical Imaging, CPB, 2000, 1 (2), 183–215, DOI: 10.2174/1389201003378960.
  38. Wen P., Wen Y., Zong M.-H., Linhardt R.J., Wu H., Encapsulation of bioactive compound in electrospun fibers and its potential application, J. Agric. Food Chem., 2017, 65 (42), 9161–9179, DOI: 10.1021/acs.jafc.7b02956.
  39. Woodruff M.A., Hutmacher D.W., The return of a forgotten polymer – Polycaprolactone in the 21st century, Progress in Polymer Science, 2010, 35 (10), 1217–1256, DOI: 10.1016/j.progpolymsci.2010.04.002.
  40. Zaccarini D.J., Lubin D., Sanyal S., Abraham J.L., Barium sulfate deposition in the gastrointestinal tract: review of the literature, Diagn. Pathol., 2022, 17 (1), 99, DOI: 10.1186/s13000-022-01283-8.
DOI: https://doi.org/10.37190/abb/206093 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 61 - 76
Submitted on: Mar 18, 2025
Accepted on: Jun 9, 2025
Published on: Aug 26, 2025
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Anna Marszałek, Magda Kocyan, Tomasz Schwarz, Anna Ścisłowska-Czarnecka, Agnieszka Królicka, Marcin Gajek, Ewa Stodolak-Zych, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.