Have a personal or library account? Click to login
Blood flow simulations in a cerebral aneurysm secured by a Flow Diverter stent Cover

Blood flow simulations in a cerebral aneurysm secured by a Flow Diverter stent

Open Access
|Aug 2025

References

  1. Abdehkakha A., Hammond A.L., Patel T.R., Siddiqui A.H., Dargush G.F., Meng H., Cerebral aneurysm flow diverter modelled as a thin inhomogeneous porous medium in hemodynamic simulations, Comput. Biol. Med. [Internet], 2021, 139 (June), 104988.
  2. Ahadi F., Biglari M., Azadi M., Bodaghi M., Computational fluid dynamics of coronary arteries with implanted stents: Effects of Newtonian and non-Newtonian blood flows, Eng. Reports, 2024, 6 (6).
  3. Antiga L., Piccinelli M., Botti L., Ene-Iordache B., Remuzzi A., Steinman D.A., An image-based modelling framework for patient-specific computational haemodynamics, Med. Biol. Eng. Comput., 2008,46 (11), 1097–1112.
  4. Augsburger L., Reymond P., Rufenacht D.A., Stergiopulos N., Intracranial stents being modelled as a porous medium: Flow simulation in stented cerebral aneurysms, Ann. Biomed. Eng., 2011, 39 (2), 850–863.
  5. Bouillot P., Brina O., Ouared R., Yilmaz H., Farhat M., Erceg G. et al., Geometrical deployment for braided stent, Med. Image Anal., 2016, 30, 85–94.
  6. Catalán-Echeverría B., Kelly M.E., Peeling L., Bergstrom D., Chen X., Malvè M., CFD-based comparison study of a new flow diverting stent and commercially-available ones for the treatment of cerebral aneurysms, Appl. Sci., 2019, 9 (7).
  7. Dazeo N., Dottori J., Boroni G., Narata A.P., Larrabide I., Stenting as porous media in anatomically accurate geometries. A comparison of models and spatial heterogeneity, J. Biomech., 2020, 110.
  8. Gasparotti R., Liserre R., Intracranial aneurysms, Eur. Radiol., 2005, 15 (3), 441–447.
  9. Janiga G., Daróczy L., Berg P., Thévenin D., Skalej M., Beuing O., An automatic CFD-based flow diverter optimization principle for patient-specific intracranial aneurysms, J. Biomech., 2015, 48 (14), 3846–3852.
  10. Jodko D., Jeckowski M., Tyfa Z., Fluid structure interaction versus rigid-wall approach in the study of the symptomatic stenosed carotid artery: Importance of wall compliance and resilience of loose connective tissue, Int. J. Numer. Method Biomed. Eng., 2022, 38 (8), 1–23.
  11. Jodko D., Obidowski D., Reorowicz P., Jóźwik K., Numerical investigations of the unsteady blood flow in the endto- side arteriovenous fistula for haemodialysis, Acta Bioeng. Biomech., 2016, 18 (4), 3–13.
  12. Keedy A., An overview of intracranial aneurysms, McGill J. Med., 2006, 9 (2), 141–146.
  13. Kim M., Taulbee D.B., Tremmel M., Meng H., Comparison of two stents in modifying cerebral aneurysm haemodynamics, Ann. Biomed. Eng., 2009, 36 (5), 726–741.
  14. Kim S., Yang H., Hong I., Oh J.H., Kim Y.B., Computational Study of Hemodynamic Changes Induced by Overlapping and Compacting of Stents and Flow Diverter in Cerebral Aneurysms, Front. Neurol., 2021, 12 (August), 1–9.
  15. Kim S., Yang H., Oh J.H., Kim Y.B., Quantitative analysis of hemodynamic changes induced by the discrepancy between the sizes of the flow diverter and parent artery, Sci. Rep., 2024, 14 (1), 1–8.
  16. Lantz B.M., Foerster J.M., Link D.P., Holcroft J.W., Regional Distribution of Cardiac Output: Normal Values in Man Determine by Video Dilution Technique, Am. J. Roentgenol., 1981, 137 (5), 90390–7.
  17. Lee K.S., Zhang J.J.Y., Nguyen V., Han J., Johnson J.N., Kirollos R. et al., The evolution of intracranial aneurysm treatment techniques and future directions, Neurosurg. Rev. [Internet], 2022, 45 (1), 1–25.
  18. Ley D., Mühl-Benninghaus R., Yilmaz U., Korner H., Cattaneo G.F.M., Mailander W. et al., The Derivo Embolization Device, a Second-Generation Flow Diverter for the Treatment of Intracranial Aneurysms, Evaluated in an Elastase- Induced Aneurysm Model, Clin. Neuroradiol., 2017, 27, 335–343.
  19. Lohner R., Appanaboyina S., Cebral J.R., Comparison of body-fitted, embedded and immersed solutions of low Reynolds- number 3-D incompressible flows, Int. J. Numer. Methods Fluids., 2008, 57, 13–30.
  20. Ma D., Dargush G.F., Natarajan S.K., Levy E.I., Siddiqui A.H., Meng H., Computer modeling of deployment and mechanical expansion of neurovascular flow diverter in patient-specific intracranial aneurysms, J. Biomech. [Internet], 2012, 45 (13), 2256–2263.
  21. Morales H.G., Bonnefous O., Modelling haemodynamics after flow diverter with a porous medium, 2014 IEEE 11th Int. Symp. Biomed. Imaging, ISBI 2014, 2014, (3), 1324–1327.
  22. Nada A., Hassan M.A., Fakhr M.A., El-Wakad M.T.I., Studying the effect of stent thickness and porosity on post-stent implantation haemodynamics, J. Med. Eng. Technol. [Internet], 2021, 45 (5), 408–416.
  23. Nogourani Z.S., Alizadeh A., Salman H.M., Al-Musawi T.J., Pasha P., Waqas M. et al., Numerical investigation of the effect of changes in blood viscosity on parameters hemodynamic blood flow in the left coronary artery with consideration capturing fluid – solid interaction, Alexandria Eng. J., 2023, 77, 369–381.
  24. Panganiban R.J., Lictaoa R.R., Mesia M.L., Amorado J.A., Cabrera H., Computational Fluid Dynamics (CFD) in Arteriovenous (AV) Graft Implantation Through End-to-Side Anastomosis with Varying Tube Diameters Across Different Vascular Access Locations for Dialysis Treatment, Med., 2024, 60 (10).
  25. Raschi M., Mut F., Lohner R., Cebral J.R., Strategy for modelling flow diverters in cerebral aneurysms as a porous medium, Int. J. Numer. Method. Biomed. Eng., 2014, 30, 909–925.
  26. Reorowicz P., Tyfa Z., Obidowski D., Wiśniewski K., Stefańczyk L., Jóźwik K. et al., Blood flow through the fusiform aneurysm treated with the Flow Diverter stent – Numerical investigations, Biocybern. Biomed. Eng., 2022, 42 (1), 375–390.
  27. Sanches A.F., Shit S., Özpeynirci Y., Liebig T., CFD to Quantify Idealized Intra-Aneurysmal Blood Flow in Response to Regular and Flow Diverter Stent Treatment, Fluids, 2022, 7 (8).
  28. Tang A.Y.-S., Chan H.-N., Tsang A.C.-O., Leung G.K.-K., Leung K.-M., Yu A.C.-H. et al., The effects of stent porosity on the endovascular treatment of intracranial aneurysms located near a bifurcation, J. Biomed. Sci. Eng., 2013, 06 (08), 812–822.
  29. Timmis A., Vardas P., Townsend N., Torbica A., Katus H., De Smedt D. et al., European Society of Cardiology: cardiovascular disease statistics 2021: Executive Summary, Eur. Hear J. – Qual. Care Clin. Outcomes, 2022, 8 (4), 377–382.
  30. Tyfa Z., Obidowski D., Reorowicz P., Stefańczyk L., Fortuniak J., Jóźwik K., Numerical simulations of the pulsatile blood flow in the different types of arterial fenestrations: Comparable analysis of multiple vascular geometries, Biocybern. Biomed. Eng., 2018, 38 (2), 228–242.
  31. Wiśniewski K., Tyfa Z., Reorowicz P., Brandel M.G., Adel T., Obidowski D. et al., Numerical flow experiment for assessing predictors for cerebrovascular accidents in patients with PHACES syndrome, Sci. Rep., 2024, 14 (1), 1–16.
  32. Yadollahi-Farsani H., Scougal E., Herrmann M., Wei W., Frakes D., Chong B., Numerical study of haemodynamics in brain aneurysms treated with flow diverter stents using porous medium theory, Comput. Methods Biomech. Biomed. Engin. [Internet], 2019, 22 (11), 961–971.
  33. Zhang H., Li L., Miao F., Yu J., Zhou B., Pan Y., Computational fluid dynamics analysis of intracranial aneurysms treated with flow diverters: A case report, Neurochirurgie, 2022, 68 (2), 235–238.
DOI: https://doi.org/10.37190/abb/205428 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 37 - 49
Submitted on: Feb 21, 2025
Accepted on: May 21, 2025
Published on: Aug 26, 2025
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Zbigniew Tyfa, Karol Wiśniewski, Piotr Reorowicz, Krzysztof Jóźwik, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.